相关习题
 0  231035  231043  231049  231053  231059  231061  231065  231071  231073  231079  231085  231089  231091  231095  231101  231103  231109  231113  231115  231119  231121  231125  231127  231129  231130  231131  231133  231134  231135  231137  231139  231143  231145  231149  231151  231155  231161  231163  231169  231173  231175  231179  231185  231191  231193  231199  231203  231205  231211  231215  231221  231229  266669 

科目: 来源: 题型:填空题

4.在极坐标系中,O为极点,若A(1,$\frac{π}{6}$),B(2,$\frac{2π}{3}$),则△AOB的面积为1.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,在△ABC中,∠BAC的平分线交BC于D,交△ABC的外接圆于E,延长AC交△DCE的外接圆于F
(1)求证:BD=DF;
(2)若AD=3,AE=5,求EF的长.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t-1}\end{array}\right.$(t为参数,t∈R),设平面直角坐标系原点与极坐标系极点重合,x轴正半轴与极轴重合,且曲线C的极坐标方程为ρ2=$\frac{12}{4co{s}^{2}θ+3si{n}^{2}θ}$.
(1)求直线l的普通方程和曲线C的直角坐标方程:
(2)求曲线C上的点到直线l距离的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在直角坐标系xOy中,曲线M的参数方程为$\left\{\begin{array}{l}{x=1+sin2θ}\\{y=2sinθ+2cosθ}{\;}\end{array}\right.$(θ为参数),若以该直角坐标系原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线N的极坐标方程为:ρcos(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$t(其中t为参数).
(1)若曲线N与曲线M只有一个公共点,求t的取值;
(2)当t=-4时,求曲线M上的点与曲线N上点的最小距离.

查看答案和解析>>

科目: 来源: 题型:解答题

20.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}$(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4})$=$\sqrt{2}$.
(Ⅰ)将曲线C和直线l化为直角坐标方程;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

19.若对任意x>0,$\frac{x}{{{x^2}+3x+1}}$≤a恒成立,则a的最小值是(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

18.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=4t-{1_{\;}}}\\{y=3t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sinθ,则直线l被圆C截得的弦长为(  )
A.$\sqrt{5}$B.$2\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

17.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2-3ρ-4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.在平面直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{8π}{3}}\\{y=-4+tsin\frac{8π}{3}}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为:ρ2-3ρ-4=0(ρ≥0).
(1)写出直线l的普通方程与曲线C的直角坐标系方程;
(2)设直线l与曲线C相交于A,B两点,求∠AOB的值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在平向直角坐标系中,直线l:$\left\{\begin{array}{l}{x=2+tcosα}\\{y=1+tsinα}\end{array}\right.$ (t为参数,0≤α<π),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C:ρ=4cosθ
(I)求曲线C的直角坐标方程;
(Ⅱ)已知点P(2,1),若直线l与曲线C交于A,B两点,且$\overrightarrow{AP}$=2$\overrightarrow{PB}$,求tanα

查看答案和解析>>

同步练习册答案