相关习题
 0  231042  231050  231056  231060  231066  231068  231072  231078  231080  231086  231092  231096  231098  231102  231108  231110  231116  231120  231122  231126  231128  231132  231134  231136  231137  231138  231140  231141  231142  231144  231146  231150  231152  231156  231158  231162  231168  231170  231176  231180  231182  231186  231192  231198  231200  231206  231210  231212  231218  231222  231228  231236  266669 

科目: 来源: 题型:填空题

14.计算1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,则猜想:1+2+3+…+(n-1)+n+(n+1)+n+…+3+2+1=n2

查看答案和解析>>

科目: 来源: 题型:解答题

13.心理学家发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数各一题,让各位同学自由选择一道题进行解答.选情况如下表:(单位:人)
几何题代数题总计
男同学30830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)经过多次测试后,女生甲每次解答一道几何题所用的时间在5---7分钟,女生乙每次解答一道几何题所用的时间在6-8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
附表及公式
P(k2≥k)0.150.100.050.0250.0100,0050.001
k2.0722.7063.8415.0246.6357.87910.828
k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

12.为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如表:
(1)完成表格,并判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(2)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为X,求X的公布列及数学期望E(X).
男性公务员女性公务员总计
有意愿生二胎3015
无意愿生二胎2025
总计
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(k2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目: 来源: 题型:解答题

11.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查,得到了如表的列联表:
患心肺疾病不患心肺疾病合计
5
10
合计50
已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为$\frac{3}{5}$.
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为患心肺疾病与性别有关?说明你的理由;
(3)已知在患心肺疾病的10位女性中,有3位又患有胃病,现在从患心肺疾病的10位女性中,选出3名进行其它方面的排查,记选出患胃病的女性人数为x,求x的分布列、数学期望.
参考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:解答题

10.电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.已知共有75名非体育迷,且在45名男观众中,有15名是体育迷.
(1)根据已知条件列出2×2列联表;
(2)并据此资料你觉得是否有理由认为“体育迷”与性别有关?
附:k2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
P(k2≥k00.050.01
k03.8416.635

查看答案和解析>>

科目: 来源: 题型:填空题

9.抛物线焦点在y轴上,且y=x+1被抛物线截得的弦长为5,则抛物线的标准方程为${x}^{2}=\frac{-4+\sqrt{66}}{2}y$或${x}^{2}=\frac{-4-\sqrt{66}}{2}y$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在等比数列{an}中,a1=2,a3,a2+a4,a5成等差数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1+$\frac{{b}_{2}}{2}$+…+$\frac{{b}_{n}}{n}$=an(n∈N*),{bn}的前n项和为Sn,求使Sn-nan+6≥0成立的正整数n的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在△ABC中,a、b、c分别为A、B、C的对边,a=$\sqrt{6}$,b=4,2cos2AsinB=(2-cosB)sin2A.
(1)求c的值;
(2)求△ABC的面积.

查看答案和解析>>

科目: 来源: 题型:填空题

6.设f(x)=2x+3,g(x+2)=f(x-1),则g(x)=2x-3.

查看答案和解析>>

科目: 来源: 题型:解答题

5.某研究性学习小组对4月份昼夜温差大小与花卉种子发芽多少之间的关系研究,记录了4月1日至4月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,如下表:
日 期4月1日4月2日4月3日4月4日4月5日
温差x(℃)101113128
发芽数y(颗)2325302616
(Ⅰ)请根据表中 4月2日至4月4日的数据,求出y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}x$+$\stackrel{∧}{a}$;若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,请用 4月1日和4月5日数据检验你所得的线性回归方程是否可靠?
(Ⅱ)从4月1日至4月5日中任选2天,记发芽的种子数分别为m,n,求事件“m,n均不小于25”的概率.
(参考公式:回归直线的方程是$\stackrel{∧}{y}$=$\stackrel{∧}{b}x$+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehata$=$\overline{y}$-b$\overline{x}$)

查看答案和解析>>

同步练习册答案