相关习题
 0  231052  231060  231066  231070  231076  231078  231082  231088  231090  231096  231102  231106  231108  231112  231118  231120  231126  231130  231132  231136  231138  231142  231144  231146  231147  231148  231150  231151  231152  231154  231156  231160  231162  231166  231168  231172  231178  231180  231186  231190  231192  231196  231202  231208  231210  231216  231220  231222  231228  231232  231238  231246  266669 

科目: 来源: 题型:解答题

19.设函数f(x)=|x+m|.
(Ⅰ) 解关于m的不等式f(1)+f(-2)≥5;
(Ⅱ)当x≠0时,证明:$f({\frac{1}{x}})+f({-x})≥2$.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知f(x)=|x2-1|+x2+kx在(0,2)上有两个零点,则实数k的取值范围是(1,$\frac{7}{2}$).

查看答案和解析>>

科目: 来源: 题型:填空题

17.在直角坐标系xOy中,曲线C1的方程为x2+y2=2,曲线C2的参数方程为$\left\{\begin{array}{l}{x=2-t}\\{y=t}\end{array}\right.$(t为参数).以原点O为极点,x轴非负半轴为极轴,建立极坐标系,则曲线C1与C2的交点的极坐标为($\sqrt{2}$,$\frac{π}{4}$).

查看答案和解析>>

科目: 来源: 题型:解答题

16.四棱锥P-ABCD中,底面ABCD是直角梯形,AB⊥AD,AD∥BC,侧棱PA⊥ABCD,且PA=AB=BC=2,AD=1
(1)试做出平面PAB与平面PCD的交线EP
(2)求证:直线EP⊥平面PBC
(3)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.上海世博会中国馆的标志性建筑物的上层框图如图所示,其上下底面是平行的两正方形,上下底面的中心连线垂直于上下底面,且各侧棱均相等,(即为正棱台),经侧量得知2AB=A1B1=12,侧棱长为$\sqrt{34}$.
(1)求证AC⊥BB1
(2)求二面角D1-A1A-B1的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,三棱台ABC-DEF中,BE⊥底面DEF,AB=BE=$\frac{1}{2}$DE=1,∠ABC=90°.
(1)求证:AD⊥平面AEF;
(2)若二面角E-AC-F的正弦值为$\frac{2\sqrt{2}}{3}$,求EF.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图.在四棱锥P-ABCD中,PA⊥平面ABCD,AD∥BC,∠ADC=90°,且PA=2,AD=CD=$\frac{1}{2}$BC=2$\sqrt{2}$,点M在PD上.
(I)求证:AB⊥PC;
(Ⅱ)若二面角M-AC-D的大小为$\frac{π}{4}$,求BM与平面PAC所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE,求二面角B-AC-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在多面体ABCDE中,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE=2
(1)求证:平面EDC⊥平面BDC;
(2)试判断直线AC与平面EDC所成角和二面角E-CD-A的大小的关系.

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,已知在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,PA=$\sqrt{3}$,AB=1,AD=2,∠BAD=120°,E,G,H分别是BC,PC,AD的中点.
(1)求证:PH∥平面GED;
(2)求二面角G-ED-A的余弦值.

查看答案和解析>>

同步练习册答案