相关习题
 0  231054  231062  231068  231072  231078  231080  231084  231090  231092  231098  231104  231108  231110  231114  231120  231122  231128  231132  231134  231138  231140  231144  231146  231148  231149  231150  231152  231153  231154  231156  231158  231162  231164  231168  231170  231174  231180  231182  231188  231192  231194  231198  231204  231210  231212  231218  231222  231224  231230  231234  231240  231248  266669 

科目: 来源: 题型:解答题

19.已知函数f(x)=|2x+4|-|x-a|.
(1)当a=1时,解不等式f(x)≥10;
(2)当a>0时,f(x)≥a2-3恒成立,试求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,四边形BCDE为矩形,平面ABC⊥平面BCDE,AC⊥BC,AC=CD=$\frac{1}{2}$BC=2,F是AD的中点.
(1)求证:AB∥平面CEF;
(2)求点A到平面CEF的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

17.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C的参数方程为:$\left\{\begin{array}{l}{x=\sqrt{3}cosφ}\\{y=sinφ}\end{array}\right.$(φ为参数),直线l的极坐标方程为ρ(cosθ+sinθ)=4.
(1)求曲线C的普通方程和直线l的直角坐标方程;
(2)若点P在曲线C上,点Q在直线l上,求线段PQ的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知变换T把平面上的点(3,-4),(5,0)分别变换成(2,-1),(-1,2),试求变换T对应的矩阵M.

查看答案和解析>>

科目: 来源: 题型:解答题

15.(1)已知关于x的不等式3x-|-2x+1|≥a,其解集为[2,+∞),求实数a的值;
(2)若对?x∈[1,2],x-|x-a|≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知函数f(x)=xlnx+ax2-1,且f′(1)=-1.
(1)求f(x)的解析式;
(2)证明:函数y=f(x)-xex+x2的图象在直线y=-x-1的图象下方.

查看答案和解析>>

科目: 来源: 题型:填空题

13.设P是曲线$\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}secθ\\ y=tanθ\end{array}\right.$(θ为参数)上的一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹的普通方程为8x2-4y2=1.

查看答案和解析>>

科目: 来源: 题型:选择题

12.(2006年)已知tan2θ=3,则$\frac{2si{n}^{2}θ-1}{sinθ•cosθ}$的值为(  )
A.-$\frac{2}{3}$B.-$\frac{1}{3}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

11.函数f(x)=$\frac{sinx•cosx}{1+sinx+cosx}$的最大值为(  )
A.-$\sqrt{3}$-1B.$\frac{\sqrt{2}-1}{2}$C.$\frac{-\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2-4ρcosθ+3=0,θ∈[0,2π].
(1)求C1的直角坐标方程;
(2)曲线C2的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数),求C1与C2的公共点的极坐标.

查看答案和解析>>

同步练习册答案