相关习题
 0  231061  231069  231075  231079  231085  231087  231091  231097  231099  231105  231111  231115  231117  231121  231127  231129  231135  231139  231141  231145  231147  231151  231153  231155  231156  231157  231159  231160  231161  231163  231165  231169  231171  231175  231177  231181  231187  231189  231195  231199  231201  231205  231211  231217  231219  231225  231229  231231  231237  231241  231247  231255  266669 

科目: 来源: 题型:选择题

9.在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),设点Q是曲线C上的一个动点,则它到直线l的距离的最小值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.在路旁某处,有电线杆15根,某人沿路的一方每次运一根放到路边,然后沿原路返回,再运第2根、第3根,…,直到全部运完返回原地,如果他第一根是运放到距原处50米处,以后的每一根比前一根要多运40米,此人共走路多少米?

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)=3ln2x-2x,它的两个极值点为x1,x2(x1<x2),给出以下结论:
①1<x1<3<x2;②1<x1<x2<3;③f(x1)>-3;④f(x1)<-$\frac{5}{3}$
则上述结论中所有正确的序号是(  )
A.①③B.②③④C.①④D.①③④

查看答案和解析>>

科目: 来源: 题型:选择题

6.在正方体ABCD-A1B1C1D1中,E是A1D1的中点,则直线AE与直线CC1所成角的正切值是(  )
A.$\frac{1}{2}$B.2C.$\frac{{\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目: 来源: 题型:选择题

5.若a≥0,b≥0,且a+b=2,则(  )
A.ab≤1B.ab≥1C.a2+b2≥4D.a2+b2≤2

查看答案和解析>>

科目: 来源: 题型:解答题

4.在直角梯形ABCD中,AD∥BC,BC=2AD=2AB=2$\sqrt{2}$,∠ABC=90°(如图1).把△ABD沿BD翻折,使得二面角A-BD-C的平面角为θ(如图2),M、N分别是BD和BC中点.
(1)若E为线段AN上任意一点,求证:ME⊥BD;
(2)若θ=$\frac{π}{3}$,求AB与平面BCD所成角的正弦值.
(3)P、Q分别为线段AB与DN上一点,使得$\frac{AP}{PB}$=$\frac{NQ}{QD}$=λ(λ∈R).令PQ与BD和AN所成的角分别为θ1和θ2.求sinθ1+sinθ2的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.设椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)外一点P(x0,y0),求证:方程($\frac{{x}_{0}^{2}}{{a}^{2}}$+$\frac{{y}_{0}^{2}}{{b}^{2}}$-1)($\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$-1)=($\frac{{x}_{0}x}{{a}^{2}}$+$\frac{{y}_{0}y}{{b}^{2}}$-1)2表示过点P的椭圆的两条切线.

查看答案和解析>>

科目: 来源: 题型:选择题

2.定义在R上的函数f(x)既是偶函数又是周期函数.若f(x)的最小正周期是π,且当x∈[0,$\frac{π}{2}$]时,f(x)=cosx,则f($\frac{5π}{3}$)的值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,三棱柱ABC-A1B1C1的侧面AA1B1B为正方形,侧面BB1C1C为菱形,∠CBB1=60°,AB⊥B1C.
(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;
(Ⅱ)若AB=2,E为BC的中点,求异面直线B1E与AC1所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图所示,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求证:平面ABCD⊥平面ADE;
(2)已知AB=2AE=2,求三棱锥C-BDE的高h.

查看答案和解析>>

同步练习册答案