相关习题
 0  231063  231071  231077  231081  231087  231089  231093  231099  231101  231107  231113  231117  231119  231123  231129  231131  231137  231141  231143  231147  231149  231153  231155  231157  231158  231159  231161  231162  231163  231165  231167  231171  231173  231177  231179  231183  231189  231191  231197  231201  231203  231207  231213  231219  231221  231227  231231  231233  231239  231243  231249  231257  266669 

科目: 来源: 题型:填空题

11.在平面直角坐标系中,已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s为参数),曲线C的参数方程为$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数$f(x)=\frac{a-2lnx}{x^2}$在点(1,f(1))处的切线与直线y=-4x+1平行.
(1)求实数a的值及f(x)的极值;
(2)若对任意x1,x2$∈(0,\frac{1}{e}]$,有$|\frac{{f({x_1})-f({x_2})}}{x_1^2-x_2^2}|>\frac{k}{x_1^2•x_2^2}$,求实数k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知曲线C的参数方程为:$\left\{\begin{array}{l}{y=sinθ}\\{x=2cosθ}\end{array}\right.$(其中参数θ∈[0,π]),直线l:y=x+b.
(Ⅰ)写出曲线C的普通方程并指出它的轨迹;
(Ⅱ)若曲线C与直线l只有一个公共点,求b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,四棱锥P-ABCD,DC∥AB,PB⊥AB,平面PAB⊥平面ABCD,AD=DC=CB=1,AB=BP=2
(1)求证:AD⊥平面PBD
(2)设平面PAD与平面CBP的交线为l,在图上作出直线l,求二面角A-l-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,点E在棱PB上,且PE=2EB.
(1)求证:PD∥平面EAC;
(2)求二面角A-EC-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知在四棱锥P-ABCD中,底面ABCD为菱形且∠ADC=120°,E,F分别是AD,PB的中点且PD=AD.
(1)求证:EF∥平面PCD;
(2)若∠PDA=60°,求证:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,在三菱柱ABC-A1B1C1中,平面A1C1CA和平面B1C1CB均为正方形,B1C1⊥A1C1,M为CC1的中点,B1C1=2,点D在线段AC上运动(不含端点A、C).
(Ⅰ)若点P在棱A1B1上,试确定点P的位置,使得,MP⊥AC1,并求出此时点P的坐标;
(Ⅱ)探究:是否存在点D,使得二面角C1-BD-C的大小为60°.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=ex-ax-1(a∈R),f′(x)为f(x)的导函数.
(1)若f(x)>xlnx在(0,+∞)内恒成立,求a的取值范围.
(2)若曲线y=f(x)在点(1,f(1))处的切线平行于直线y=ex+m,当x∈(t,t+2)时,其中,-2<t<0,讨论函数g(x)=$\frac{{x}^{2}+3x+3}{f′(x)}$的单调性.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=(a-$\frac{1}{2}$)(2x-1)+|lnx|.
(1)当a=1时,求f(x)的单调区间;
(2)若f(x)<2x2在(1,$\frac{5}{4}$)内恒成立,求满足条件的a的最大整数值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知函数f(x)=(2-a)lnx+2ax+$\frac{1}{x}$,(a∈R),函数h(x)=px-$\frac{p+2e-1}{x}$(其中e=2.718…).
(1)求f(x)的单调区间;
(2)若f(x)在x=1处的切线的倾斜角为$\frac{π}{4}$,在区间[1,e]至少存在一个x0,使得h(x0)>f(x0)成立,求实数p的取值范围.

查看答案和解析>>

同步练习册答案