相关习题
 0  231109  231117  231123  231127  231133  231135  231139  231145  231147  231153  231159  231163  231165  231169  231175  231177  231183  231187  231189  231193  231195  231199  231201  231203  231204  231205  231207  231208  231209  231211  231213  231217  231219  231223  231225  231229  231235  231237  231243  231247  231249  231253  231259  231265  231267  231273  231277  231279  231285  231289  231295  231303  266669 

科目: 来源: 题型:选择题

9.若直线x=m(m>1)与函数f(x)=logax,g(x)=logbx的图象及x轴分别交于A,B,C三点.若|AB|=2|BC,则|(  )
A.b=a2或a=b2B.a=b-1或a=b3C.a=b-1或b=a3D.a=b3

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知的定义域为(0,π),且对定义域的任意x恒有f′(x)sinx>f(x)cosx成立,则下列关系成立的是(  )
A.f($\frac{2016π}{2017}$)>f($\frac{π}{2017}$)
B.f($\frac{2016π}{2017}$)=f($\frac{π}{2017}$)
C.f($\frac{2016π}{2017}$)<f($\frac{π}{2017}$)
D.f($\frac{2016π}{2017}$)与f($\frac{π}{2017}$)的大小关系不确定

查看答案和解析>>

科目: 来源: 题型:选择题

7.梯形ABCD中,AB∥CD,CD=2AB,AC交BD于O点,过O点的直线交AD、BC分别于E、F点,$\overrightarrow{DE}$=m$\overrightarrow{DA}$,$\overrightarrow{CF}$=n$\overrightarrow{CB}$,则$\frac{1}{2-m}$+$\frac{1}{2-n}$=(  )
A.2B.$\frac{3}{2}$C.1D.$\frac{4}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin($\frac{π}{4}$+θ)=2$\sqrt{2}$
(1)将曲线C上各点的纵坐标伸长为原来的两倍,得到曲线C1,写出曲线C1的极坐标方程.
(2)若射线θ=$\frac{π}{6}$与l的交点分别为A,射线θ=-$\frac{π}{6}$与l的交点分别为B,求△OAB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

5.设函数f(x)=lnx+1.
(1)已知函数$F(x)=f(x)+\frac{1}{4}{x^2}-\frac{3}{2}x+\frac{1}{4}$,求函数F(x)的极值;
(2)已知函数G(x)=f(x)+ax2-(2a+1)x+a(a>0).若存在实数m∈(2,3),使得当x∈(0,m]时,函数G(x)的最大值为G(m),求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

4.对任意x,y∈R,恒有$sinx+cosy=2sin(\frac{x-y}{2}+\frac{π}{4})cos(\frac{x+y}{2}-\frac{π}{4})$,则$sin\frac{7π}{24}cos\frac{13π}{24}$等于(  )
A.$\frac{{1+\sqrt{2}}}{4}$B.$\frac{{1-\sqrt{2}}}{4}$C.$\frac{{\sqrt{3}+\sqrt{2}}}{4}$D.$\frac{{\sqrt{3}-\sqrt{2}}}{4}$

查看答案和解析>>

科目: 来源: 题型:填空题

3.函数f(x)=sinx-cosx-1的最小正周期是2π,单调递增区间是[2kπ-$\frac{π}{4}$,2kπ+$\frac{3π}{4}$],k∈Z.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图所示,⊙O是四边形ABCD的外接圆,BC与过点D的切线l交于点E,CD是∠BDE的角平分线,AD⊥CD.
(1)证明:∠ADB=∠ABD;
(2)设⊙O的半径r=2,BD=2$\sqrt{3}$,求△BDE的外接圆的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

1.以坐标原点为极点x轴的正半轴为极轴建立极坐标系,已知曲线${C_1}:{(x-2)^2}+{y^2}=4$,点A的极坐标为$(3\sqrt{2},\frac{π}{4})$,直线l的极坐标方程为$ρcos(θ-\frac{π}{4})=a$,且点A在直线l上.
(1)求曲线C1的极坐标方程和直线l的直角坐标方程;
(2)设l向左平移6个单位后得到l′,l′与C1的交点为M,N,求l′的极坐标方程及|MN|的长.

查看答案和解析>>

科目: 来源: 题型:填空题

20.空间四点A、B、C、D满足|AB|=1,|CD|=2,E、F分别是AD、BC的中点,若AB与CD所在直线的所成角为60°,则|EF|=$\frac{\sqrt{3}}{2}$或$\frac{{\sqrt{7}}}{2}$.

查看答案和解析>>

同步练习册答案