相关习题
 0  231118  231126  231132  231136  231142  231144  231148  231154  231156  231162  231168  231172  231174  231178  231184  231186  231192  231196  231198  231202  231204  231208  231210  231212  231213  231214  231216  231217  231218  231220  231222  231226  231228  231232  231234  231238  231244  231246  231252  231256  231258  231262  231268  231274  231276  231282  231286  231288  231294  231298  231304  231312  266669 

科目: 来源: 题型:解答题

14.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位,已知圆C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),直线l的极坐标方程为ρ=$\frac{4}{sinθ+cosθ}$,点P在l上.
(1)过P向圆C引切线,切点为F,求|PF|的最小值;
(2)射线OP交圆C于R,点Q在OP上,且满足|OP|2=|OQ|•|OR|,求Q点轨迹的极坐标方程.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知在直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}{x=-3t}\\{y=m+\sqrt{3}t}\end{array}\right.$(t是参数,m是常数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C极坐标方程为ρ=asin(θ+$\frac{π}{3}$),点M的极坐标为(4,$\frac{π}{6}$),且点M在曲线C上.
(I)求a的值及曲线C直角坐标方程;
(II )若点M关于直线l的对称点N在曲线C上,求|MN|的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=|2x-1|.
(1)求不等式f(x)<2;
(2)若函数g(x)=f(x)+f(x-1)的最小值为a,且m+n=a(m>0,n>0),求$\frac{{{m^2}+2}}{m}+\frac{{{n^2}+1}}{n}$的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.在平面直角坐标系xOy中,直线l经过点A(-1,0),其倾斜角是α,以原点O为极点,以x轴的非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程是ρ2=6ρcosθ-5.
(Ⅰ)若直线l和曲线C有公共点,求倾斜角α的取值范围;
(Ⅱ)设B(x,y)为曲线C任意一点,求$\sqrt{3}x+y$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设函数f(x)=|x-b|-alnx,其中a、b均为非负实数.
(1)当b>0时,若函数f(x)在x=b处取得极小值,证明:0≤a≤b.
(2)若对?a∈[$\frac{1}{e}$,e],不等式f(x)≥0恒成立,求实数b的值;
(3)若?a∈(0,+∞),使得方程f(a)=b2-l有解,试求实数b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=2$\sqrt{3}$,O为AC与BD的交点,E为棱PB的中点.
(Ⅰ)证明:△EAC是等腰直角三角形;
(Ⅱ)求二面角A-CD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知四边形ACED和四边形CBFE都是矩形,且二面角A-CE-B是直二面角,AM垂直CD交CE于M.
(1)求证:AM⊥BD;
(2)若AD=$\sqrt{6}$,BC=1,AC=$\sqrt{3}$,求二面角M-AB-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,面PAB⊥底面ABCD,PB=1,且∠PBA=60°
(1)求证:面PAD⊥面PBD;
(2)求二面角C-PB-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知M为抛物线y2=4x上的一点,点M到直线4x-3y+8=0的距离为d1;点M到y轴距离为d2.则d1+d2的最小值为$\frac{7}{5}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知函数f(x)=sin(2x+$\frac{π}{3}$),x∈[-$\frac{π}{6}$,$\frac{5π}{6}$]且函数g(x)=2[f(x)]2-f(x)-m.
(1)当m=0时,求函数y=g(x)的零点;
(2)当m∈[-$\frac{1}{8}$,3],讨论函数y=g(x)的零点个数及相应零点的和.

查看答案和解析>>

同步练习册答案