相关习题
 0  231136  231144  231150  231154  231160  231162  231166  231172  231174  231180  231186  231190  231192  231196  231202  231204  231210  231214  231216  231220  231222  231226  231228  231230  231231  231232  231234  231235  231236  231238  231240  231244  231246  231250  231252  231256  231262  231264  231270  231274  231276  231280  231286  231292  231294  231300  231304  231306  231312  231316  231322  231330  266669 

科目: 来源: 题型:解答题

3.如图,在三棱锥P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M为PB的中点,N在BC上,且BN=$\frac{1}{3}$BC.
(1)求证:MN⊥AB;
(2)求平面MAN与平面PAN所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知四边形ABCD为矩形,PA⊥平面ABCD,设PA=AB=a,BC=2a,求二面角B-PC-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD是平行四边形,PE⊥平面ABCD,垂足E在线段AD上.且AE=$\frac{1}{3}$ED.
(I)在PC上是否存在一点M,使DM∥平面PBE;
(Ⅱ)若EB⊥EC,CD=$\sqrt{5}$,PB=PC=2$\sqrt{3}$.求二面角P-CD-E的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)短轴的一个端点与其两个焦点构成面积为3的直角三角形.
(1)求椭圆C的方程;
(2)过圆E:x2+y2=2上任意一点P作圆E的切线l,l与椭圆C交于A、B两点,以AB为直径的圆是否过定点,如过,求出该定点;不过说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

10.若函数f(x)=ax2-x-1的负零点有且仅有一个,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

9.下列叙述正确的是①②③
①{1,2}⊆{1,2};②{0}∈{{0},{1}};③满足A⊆{a,b}的集合A有4个;④集合{x|y=x2}={y|y=x2}.

查看答案和解析>>

科目: 来源: 题型:选择题

8.若直线y=x+m与曲线y=$\sqrt{1-{x}^{2}}$有两个不同交点,则实数m的范围是(  )
A.[-$\sqrt{2}$,$\sqrt{2}$]B.(-∞,-$\sqrt{2}$]∪[$\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.[1,$\sqrt{2}$)

查看答案和解析>>

科目: 来源: 题型:解答题

7.在某个旅游城市里,每年各个月份随着游客数量的变化,从事旅游服务工作的人数也会发生相应的变化.由政府部门的统计数据可知,该城市每月从事旅游服务工作的人数f(n)(单位:千人)可近似地用函数f(n)=Acos(ωn+φ)+k表示,其中n(n∈[1,12],n∈N*)表示月份(如n=1表示1月份),且A>0,ω≠0.经测算,在过去的一年中,f(n)=$\frac{3}{2}$cos[$\frac{π}{6}$(n+2)]+$\frac{28}{5}$.
(1)在过去的一年中,该城市哪个月份从事旅游服务的人数最少?最少时有多少人?
(2)在过去的一年中,该城市从几月份到几月份从事旅游服务工作的人数持续增加?
(3)假设今年该城市的某个旅游景点因环境破坏严重而被迫关闭,那么在此期间,对于函数f(n)=Acos(ωn+φ)+k(A>0,ω≠0)中的A,ω,φ,k四个量,哪个(或哪些)量的值最有可能减小,(忽略其他因素的影响)?试说明你的理由.

查看答案和解析>>

科目: 来源: 题型:填空题

6.函数y=$\sqrt{-lg(1-x)}$的定义域为[0,1).

查看答案和解析>>

科目: 来源: 题型:解答题

5.不论a取何值,函数y=loga(x+3)-1恒过定点A.
(1)求点A的坐标;
(2)若点A在直线mx+ny+1=0上,其中m>0,n>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

同步练习册答案