相关习题
 0  231151  231159  231165  231169  231175  231177  231181  231187  231189  231195  231201  231205  231207  231211  231217  231219  231225  231229  231231  231235  231237  231241  231243  231245  231246  231247  231249  231250  231251  231253  231255  231259  231261  231265  231267  231271  231277  231279  231285  231289  231291  231295  231301  231307  231309  231315  231319  231321  231327  231331  231337  231345  266669 

科目: 来源: 题型:选择题

9.在长方体ABCD-A1B1C1D1中,∠BAB1=30°,AA1=1,则点A到平面BCC1B1的距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目: 来源: 题型:填空题

8.四面体ABCD中,AB、AC、AD两两垂直,且AB=1,AC=2,AD=4,则点A到平面BCD的距离是$\frac{4\sqrt{21}}{21}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.在极坐标系中,圆C:ρ=2与曲线ρ=$\frac{a}{1-acosθ}$(a>0)交于A,B两点,当|AB|取最大值时,a=2.

查看答案和解析>>

科目: 来源: 题型:解答题

6.设点A的极坐标为(ρ1,θ1)(ρ1≠0,0<θ1<$\frac{π}{2}$),直线l经过A点,且倾斜角为α.
(1)证明:l的极坐标方程是ρsin(θ-α)=ρ1sin(θ1-α);
(2)若O点到l的最短距离d=ρ1,求θ1与α间的关系.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图,△ABC中,∠ABC=90°,∠C=30°,AB=1,D为AC中点,AE⊥BD于点E,延长AE交BC于点F,沿BD将△ABC折成四面体A-BCD.
(Ⅰ)若M是FC的中点,求证:DM∥平面AEF;
(Ⅱ)若cos∠AEF=$\frac{1}{3}$,求点D到平面ABC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

4.在极坐标系中,求曲线cos2θ-ρcosθ+1=0上一点到极点距离的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.在极坐标系中,求曲线ρ=2-sinθ-cosθ上一点到极点距离的范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{6}{1+si{n}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l:ρsinθ-ρcosθ+1=0与曲线C交于不同的两点M,N,求|MN|.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知曲线C的极坐标方程是$\frac{2}{{ρ}^{2}}$=1+sin2θ,直线l的参数方程是$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}t+1}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)将曲线C的极坐标方程化为直角坐标方程;
(2)设直线l与x轴的交点是P,直线l与曲线C交于M,N两点,求$\frac{1}{|PM|}$+$\frac{1}{|PN|}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在平行四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,BC=$\sqrt{3}$AB,对角线AC=2.
(1)求对角线BD的长;
(2)求点A到BD的长.
(参考数据:$\sqrt{2+\sqrt{3}}$=$\frac{\sqrt{2}+\sqrt{6}}{2}$)

查看答案和解析>>

同步练习册答案