相关习题
 0  231161  231169  231175  231179  231185  231187  231191  231197  231199  231205  231211  231215  231217  231221  231227  231229  231235  231239  231241  231245  231247  231251  231253  231255  231256  231257  231259  231260  231261  231263  231265  231269  231271  231275  231277  231281  231287  231289  231295  231299  231301  231305  231311  231317  231319  231325  231329  231331  231337  231341  231347  231355  266669 

科目: 来源: 题型:选择题

19.已知△ABC的三个内角A,B,C所对的边长分别为a,b,c,G为三角形的重心,且满足a$\overrightarrow{GA}$+b$\overrightarrow{GB}$+c$\overrightarrow{GC}$=$\overrightarrow{0}$,则角C=(  )
A.30°B.45°C.60°D.120°

查看答案和解析>>

科目: 来源: 题型:解答题

18.(1)某校共有学生2000名,各年级男、女生人数如表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.18,现用分层抽样的方法在全校100名学生,求应在三年级抽取的学生人数;
一年级二年级三年级
女生373xy
男生377370z
(2)甲乙两个班级进行一门课程的考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下的列联表:
班级与成绩列联表
优秀不优秀
甲班1030
乙班1228
根据列联表的独立性检验,能否在犯错误的概率不超过0.1的前提下认为成绩与班级有关系?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232,0722.7063.8415.0246.6357.87910.828
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知正三棱锥P-ABC底面边长为6,底边BC在平面α内,绕BC旋转该三棱锥,若某个时刻它在平面α上的正投影是等腰直角三角形,则此三棱锥高的取值范围是(  )
A.(0,$\sqrt{6}$]B.(0,$\frac{\sqrt{6}}{2}$]∪[$\sqrt{6}$,3]C.(0,$\frac{\sqrt{6}}{2}$]D.(0,$\sqrt{6}$]∪[3,$\frac{3\sqrt{6}}{2}$]

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,△ABC中,∠ABC=90°,∠C=30°,AB=1,D为AC中点,AE⊥BD于点E,延长AE交BC于点F,沿BD将△ABC折成四面体A-BCD.
(1)若M是FC的中点,求证:直线DM∥平面AEF;
(2)若cos∠AEF=$\frac{1}{3}$,求点D到平面ABC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知椭圆C的中心在原点,对称轴为坐标轴,过点(1,$\frac{\sqrt{3}}{2}$),($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆的方程;
(2)过椭圆右焦点斜率为k的直线l交椭圆于A,B两点,若$\overrightarrow{OA}$$•\overrightarrow{OB}$=2,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

14.人如图,在四棱锥P-ABCD中,底面ABCD是梯形,AB∥CD,∠BAD=60°,AB=2AD,AP⊥BD.
(1)证明:平面ABD⊥平面PAD;
(2)若PA与平面ABCD所成的角为60°,AD=2,PA=PD,求点C到平面PAB的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在正方体ABCD-A1B1C1D1中,棱长是1,E、F分别是AB、BC的中点,H是DD1上任意一点.
(1)证明:EF∥平面A1C1H;
(2)若H是DD1的中点,求H到平面A1C1FE的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知抛物线C:y2=2px(p>0),F是C的焦点,纵坐标为2的定点M在抛物线上,且满足$\overrightarrow{OM}$•$\overrightarrow{MF}$=-4,过点F作直线l与C相交于A,B两点,记A(x1,y1),B(x2,y2).
(1)求曲线C的方程;
(2)设l的斜率为1,求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角的大小;
(3)设$\overrightarrow{FB}$=λ$\overrightarrow{AF}$,若λ∈[4,9],求l在y轴上截距的变化范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在直三棱柱ABA1中,D1C=$\sqrt{2}$a,DD1=DA=DC=a,点E、F分别是BC、DC的中点.
(1)证明:AF⊥ED1
(2)求点E到平面AFD1的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,圆C1的极坐标方程是ρ2+2ρcosθ=0,圆C2的参数方程是$\left\{\begin{array}{l}{x=cosα}\\{y=-1+sinα}\end{array}\right.$(α是参数).
(1)求圆C1和圆C2的交点的极坐标;
(2)若直线l经过圆C1和圆C2的一个交点,且垂直于公共弦,求直线l的极坐标方程.

查看答案和解析>>

同步练习册答案