相关习题
 0  231169  231177  231183  231187  231193  231195  231199  231205  231207  231213  231219  231223  231225  231229  231235  231237  231243  231247  231249  231253  231255  231259  231261  231263  231264  231265  231267  231268  231269  231271  231273  231277  231279  231283  231285  231289  231295  231297  231303  231307  231309  231313  231319  231325  231327  231333  231337  231339  231345  231349  231355  231363  266669 

科目: 来源: 题型:填空题

5.行列式$|\begin{array}{l}{2}&{8}&{3}\\{1}&{5}&{7}\\{-1}&{4}&{-6}\end{array}|$中元素8的代数余子式的值为-1.

查看答案和解析>>

科目: 来源: 题型:填空题

4.行列式中$|\begin{array}{l}{6}&{-3}&{1}\\{2}&{5}&{k}\\{1}&{4}&{-2}\end{array}|$中元素-3的代数余子式的值为7,则k=3.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=lnx-mx.
(Ⅰ)若f(x)的最大值为-1,求实数m的值;
(Ⅱ)若f(x)的两个零点为x1,x2,且ex1≤x2,求y=(x1-x2)f′(x1+x2)的最小值.(其中e为自然对数的底数,f′(x)是f(x)的导函数)

查看答案和解析>>

科目: 来源: 题型:填空题

2.设线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{t}_{1}}\\{0}&{1}&{{t}_{2}}\end{array})$,解为$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$,则三阶行列式$[\begin{array}{l}{1}&{-1}&{{t}_{1}}\\{0}&{1}&{-1}\\{-1}&{{t}_{2}}&{-6}\end{array}]$的值为19.

查看答案和解析>>

科目: 来源: 题型:解答题

1.如图,ABCD是直角梯形,∠ABC=90°,AD∥BC,SA⊥平面ABCD,SA=AB=BC=2,AD=1,求面SCD与面SBA所成二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知四棱锥P一OABC中,PO=3,OA=$\sqrt{7}$,AB=BC=4,PO⊥面OABC,PB⊥BC,且PB与平面OABC所成角为30°,求面APB与面CPB所成二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在正方体ABCD-A1B1C1D1中.P和Q分别是BC和CD的中点,求:
(1)A1D与PQ所成角的大小;
(2)A1Q与平面B1PB所成角的余弦值;
(3)二面角C一D1B1-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图所示,在四棱锥A-BCDEE中,AE⊥面BCDE,△BCE是正三角形,BD和CE的交点F恰好平分CE.又AE=BE=2,∠CDE=120°,AG=$\frac{\sqrt{2}}{2}$.
(Ⅰ)证明平面ABD⊥平面AEC;
(Ⅱ)求二面角B-FG-C的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,在五棱锥S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°
(1)求证:SB⊥BC;
(2)求点E到平面SCD的距离;
(3)求平面SCB与平面SCA的夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.如图,在直角梯形PBCD中,∠D=∠C=90°,BC=CD=2,PD=4,A为PD的中点,将△PAB沿AB折起,使平面PAB⊥平面ABCD.
(1)证明:平面PBD⊥平面PAC;
(2)若点E在DC的延长线上且满足$\overrightarrow{DE}$=λ$\overrightarrow{DC}$(λ>0),当λ为何值时,二面角P-BE-A的大小为60°.

查看答案和解析>>

同步练习册答案