相关习题
 0  231170  231178  231184  231188  231194  231196  231200  231206  231208  231214  231220  231224  231226  231230  231236  231238  231244  231248  231250  231254  231256  231260  231262  231264  231265  231266  231268  231269  231270  231272  231274  231278  231280  231284  231286  231290  231296  231298  231304  231308  231310  231314  231320  231326  231328  231334  231338  231340  231346  231350  231356  231364  266669 

科目: 来源: 题型:解答题

15.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2,点E是SD的中点,O是AC与BD的交点.
(1)求证:OE∥平面SBC;
(2)求点E到平面SBC的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,AC为线段BD的垂直平分线,且AE=BE=$\frac{1}{2}$CE=1,现将△BCD沿线段BD翻折到PBD,使二面角P-BD-A为60°.
(1)证明:PA⊥平面ABD;
(2)设AB的中点为F,求点F到平面PBD的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知棱长3的正方体ABCD-A1B1C1D1中,长为2的线段MN的一端点M在DD1上运动,另一个端点N在底面ABCD内运动,线段EF在平面BC1A1内,则MN中点P到EF距离的最小值为(  )
A.$\sqrt{3}$-1B.$\frac{3\sqrt{2}}{2}$-1C.$\frac{3\sqrt{3}}{2}$-1D.2$\sqrt{3}$-1

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知f(x)=$\frac{x+1}{{e}^{x}}$(e是自然对数的底数).
(Ⅰ)求函数f(x)的极大值;
(Ⅱ)令h(x)=a+2f′(x)(a∈R),若h(x)有两个零点,x1,x2(x1<x2),求a的取值范围;
(Ⅲ)设F(x)=aex-x2,在(Ⅱ)的条件下,试证明0<F(x1)<1.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=ex-kx.
(1)若k>0,且对于任意x∈[0,+∞),f(x)>0恒成立,试确定实数k的取值范围;
(2)设函数F(x)=f(x)+f(-x),
     求证:lnF(1)+lnF(2)+…+lnF(n)>$\frac{n}{2}ln$(en+1+2).(n∈N+).

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t为参数),在直角坐标系xOy中,以O点为极点,x轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M的方程为ρ2-6ρsinθ=-8.
(Ⅰ)求圆M的直角坐标方程;
(Ⅱ)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=lnx+ax在点(t,f(t))处切线方程为y=2x-1
(Ⅰ)求a的值
(Ⅱ)若$-\frac{1}{2}≤k≤2$,证明:当x>1时,$f(x)>k({1-\frac{3}{x}})+x-1$
(Ⅲ)对于在(0,1)中的任意一个常数b,是否存在正数x0,使得:${e^{f({{x_0}+1})-2{x_0}-1}}+\frac{b}{2}x_0^2<1$.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,是一曲边三角形地块,其中曲边AB是以A为顶点,AC为对称轴的抛物线的一部分,点B到AC边的距离为2Km,另外两边AC、BC的长度分别为8Km,2$\sqrt{5}$Km.现欲在此地块内建一形状为直角梯形DECF的科技园区.求科技园区面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,在半径为$10\sqrt{3}(m)$的半圆形(其中O为圆心)铝皮上截取一块矩形材料ABCD,其中点C、D在圆弧上,点A、B在半圆的直径上,现将此矩形铝皮ABCD卷成一个以BC为母线的圆柱形罐子的侧面(注:不计剪裁和拼接损耗),设矩形的边长BC=x(m),圆柱的侧面积为S(m2)、体积为V(m3),
(1)分别写出圆柱的侧面积S和体积V关于x的函数关系式;
(2)当x为何值时,才能使得圆柱的侧面积S最大?
(3)当x为何值时,才能使圆柱的体积V最大?并求出最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

6.关于x的方程$|\begin{array}{l}{1}&{x}&{{x}^{2}}\\{1}&{2}&{4}\\{1}&{3}&{9}\end{array}|$=0的解为x=2或x=3.

查看答案和解析>>

同步练习册答案