相关习题
 0  231193  231201  231207  231211  231217  231219  231223  231229  231231  231237  231243  231247  231249  231253  231259  231261  231267  231271  231273  231277  231279  231283  231285  231287  231288  231289  231291  231292  231293  231295  231297  231301  231303  231307  231309  231313  231319  231321  231327  231331  231333  231337  231343  231349  231351  231357  231361  231363  231369  231373  231379  231387  266669 

科目: 来源: 题型:解答题

11.已知直线l:2x+y+m=0(m∈R),圆O:x2+y2=4.
(1)若直线l将圆O分成的两端弧之比为1:3,求m的值;
(2)P是直线l上的任意一点,PA、PB是圆O的两条切线,A,B是切点,若四边形OAPB面积的最小值为2$\sqrt{5}$,求m的值;
(3)在(2)的条件下,以直线l上的点M为圆心所作的圆M与圆O有公共点,试求半径取最小值时圆M的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知曲线C1:$\left\{\begin{array}{l}{x=-4+cost}\\{y=3+sint}\end{array}\right.$ (t为参数),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=3sinθ}\end{array}\right.$(θ为参数).
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为t=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线$\left\{\begin{array}{l}{x=3+\frac{2\sqrt{5}}{5}t}\\{y=-2+\frac{\sqrt{5}}{5}t}\end{array}\right.$(t为参数)距离的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

9.已知直线的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,求点A(4,$\frac{7π}{4}$)到这条直线的距离$\frac{\sqrt{2}}{2}$..

查看答案和解析>>

科目: 来源: 题型:选择题

8.将点M的极坐标(2,$\frac{π}{3}}$)化成直角坐标是(  )
A.(-1,-1)B.(1,1)C.(1,$\sqrt{3}}$)D.(${\sqrt{3}$,1)

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系中,已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l过极坐标系内的两点A(2$\sqrt{2}$,$\frac{π}{4}$)和B(3,$\frac{π}{2}$).
(1)写出曲线C和直线l的直角坐标系中的普通方程;
(2)若P是曲线C上任意一点,求△ABP面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC=BC=$\frac{1}{2}$AA1,D是棱AA1的中点,DC1⊥BD.
(1)证明:DC1⊥面BCD;
(2)设AA1=2,求点B1到平面BDC1的距离.

查看答案和解析>>

科目: 来源: 题型:选择题

5.点M的直角坐标是(3,$\sqrt{3}$),则点M的极坐标可能为(  )
A.(2$\sqrt{3}$,$\frac{5π}{6}$)B.(2$\sqrt{3}$,$\frac{π}{6}$)C.(2$\sqrt{3}$,-$\frac{π}{6}$)D.(2$\sqrt{3}$,-$\frac{5π}{6}$)

查看答案和解析>>

科目: 来源: 题型:填空题

4.实数x,y满足x=$\sqrt{9-{y}^{2}}$,则z=$\frac{y}{x+1}$的取值范围[-3,3].

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知圆的方程为x2+y2=2,若直线y=x-b与圆相切,则b等于(  )
A.2B.-2C.0D.2或-2

查看答案和解析>>

科目: 来源: 题型:选择题

2.设曲线x2+y2-2x+4y-4=0关于直线x-2ay+11=0对称,则直线x-2ay+11=0的倾斜角为(  )
A.arctan(-6)B.arctan(-$\frac{1}{6}$)C.π-arctan6D.π-arctan$\frac{1}{6}$

查看答案和解析>>

同步练习册答案