相关习题
 0  231205  231213  231219  231223  231229  231231  231235  231241  231243  231249  231255  231259  231261  231265  231271  231273  231279  231283  231285  231289  231291  231295  231297  231299  231300  231301  231303  231304  231305  231307  231309  231313  231315  231319  231321  231325  231331  231333  231339  231343  231345  231349  231355  231361  231363  231369  231373  231375  231381  231385  231391  231399  266669 

科目: 来源: 题型:解答题

14.已知直线y=$\frac{1}{e}$是函数f(x)=$\frac{ax}{e^x}$的切线(其中e=2.71828…).
(I)求实数a的值;
(Ⅱ)若对任意的x∈(0,2),都有f(x)<$\frac{m}{{2x-{x^2}}}$成立,求实数m的取值范围;
(Ⅲ)若函数g(x)=lnf(x)-b的两个零点为x1,x2,证明:g′(x1)+g′(x2)>$g'(\frac{{{x_1}+{x_2}}}{2})$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知|x-1|≤1,|y-2|≤1.
(1)求y的取值范围;
(2)若对任意实数x,y,|x-2y+2a-1|≤3成立,求实数a的值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设函数f(x)=alnx,g(x)=$\frac{1}{2}{x^2}$.
(I)若a>0,求h(x)=f(x)-g(x)的单调区间;
(Ⅱ)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值;
(Ⅲ)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)<(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知函数f(x)=|x-1|-|x+1|.
(1)求不等式|f(x)|<1的解集;
(2)若不等式|a|f(x)≥|f(a)|对任意a∈R恒成立,求实数x的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在直角坐标系xOy中,以O为极点,x正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρcos(θ-$\frac{π}{3}$)=1,A,B分别为C与x轴,y轴的交点.
(1)写出C的直角坐标方程,并求A,B的极坐标;
(2)设M为曲线C上的一个动点,$\overrightarrow{OQ}$=λ•$\overrightarrow{OM}$(λ>0),|$\overrightarrow{OM}$|•|$\overrightarrow{OQ}$|=2,求动点Q的极坐标方程.

查看答案和解析>>

科目: 来源: 题型:选择题

9.若P(-2,-$\frac{π}{3}$)是极坐标系中的一点,则Q(2,$\frac{2π}{3}$)、R(2,$\frac{8π}{3}$)、M(-2,$\frac{5π}{3}$)、N(2,2kπ-$\frac{4π}{3}$)(k∈Z)四点中与P重合的点有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知函数f(x)=|x-2|-|x-5|.
(1)求函数f(x)的最值;
(2)若?x∈R,f(x)≥t2-$\frac{7}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知实数x,y满足(x-1)2+(y-1)2≤1,则|y-x-2|+|x+2y+2|的最大值是(  )
A.6B.$\sqrt{2}$+$\sqrt{5}$C.7+$\sqrt{5}$D.9

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知函数f(x)=x2-2ax+b(a,b∈R),记M是|f(x)|在区间[0,1]上的最大值.
(I)当b=0且M=2时,求a的值;
(Ⅱ)若M≤$\frac{1}{2}$,证明0≤a≤1.

查看答案和解析>>

科目: 来源: 题型:解答题

5.已知F(x)=f(x)-g(x),其中f(x)=$lo{g}_{\frac{1}{2}}$(x-2),当点(x,y)在y=f(x)的图象上时,就有(2x,2y)在y=g(x)的图象上.
(1)求g(x)的解析式;
(2)解不等式F(x)≥0.

查看答案和解析>>

同步练习册答案