相关习题
 0  231226  231234  231240  231244  231250  231252  231256  231262  231264  231270  231276  231280  231282  231286  231292  231294  231300  231304  231306  231310  231312  231316  231318  231320  231321  231322  231324  231325  231326  231328  231330  231334  231336  231340  231342  231346  231352  231354  231360  231364  231366  231370  231376  231382  231384  231390  231394  231396  231402  231406  231412  231420  266669 

科目: 来源: 题型:解答题

7.命题p:“?x∈[0,$\frac{π}{4}$],tanx≤m”恒成立,命题q:“f(x)=x2+m,g(x)=($\frac{1}{2}$)x-m,对?x1∈[-1,3],?x2∈[0,2],f(x1)≥g(x2)成立”,若p∧q为假,p∨q为真,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知定义在R上的函数f(x)=3|x-m|-2(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(3m),则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目: 来源: 题型:解答题

5.定义在(-1,1)上的函数f(x)=x+sinx,如果f(1-a)+f(1-a2)>0,那么能否确定a的取值范围?试说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

4.函数f($\sqrt{x+1}$)的定义域为[0,3],则f(x)的定义域为[1,2].

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2t}\\{y=4{t}^{2}}\end{array}\right.$(t为参数),直线l:x-y-1=0.
(1)求曲线C上的点到直线l的距离的最小值;
(2)过点M(0,2)与直线l平行的直线l′与曲线C交于A、B两点,试求|MA|+|MB|的值.

查看答案和解析>>

科目: 来源: 题型:填空题

2.函数y=($\frac{1}{2-a}$)x+1+3(a<2),图象必经过点(-1,4).

查看答案和解析>>

科目: 来源: 题型:解答题

1.某工厂生产甲,乙两种芯片,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品.现随机抽取这两种芯片各100件进行检测,检测结果统计如下:
测试指标[70,76)[76,82)[82,88)[88,94)[94,100]
芯片甲81240328
芯片乙71840296
(1)试分别估计芯片甲,芯片乙为合格品的概率;
(2)生产一件芯片甲,若是合格品可盈利40元,若是次品则亏损5元;生产一件芯片乙,若是合格品可盈利50元,若是次品则亏损10元.在(1)的前提下,记X为生产1件芯片甲和1件芯片乙所得的总利润,求随机变量X的分布列及生产1件芯片甲和1件芯片乙所得总利润的平均值.

查看答案和解析>>

科目: 来源: 题型:填空题

20.某医院用甲、乙两种原材料为手术后病人配制营养餐,甲种原料每克含蛋白质5个单位和维生素C 10个单位,售价2元;乙种原料每克含蛋白质6个单位和维生素C 20个单位,售价3元;若病人每餐至少需蛋白质50个单位、维生素C 140个单位,在满足营养要求的情况下最省的费用为23.

查看答案和解析>>

科目: 来源: 题型:填空题

19.已知积分估值定理:如果函数f(x)在[a,b](a<b)上的最大值和最小值分别为M,m,那么m(b-a)≤$\int_a^b$f(x)dx≤M(b-a),根据上述定理,定积分$\int_{-1}^2{{2^{-{x^2}}}}$dx的估值范围是[$\frac{3}{16}$,3].

查看答案和解析>>

科目: 来源: 题型:选择题

18.由1,2,3,4,5,6组成没有重复数字的六位数,要求奇数不相邻,且4不在第四位,则这样的六位数共有(  )个.
A.72B.96C.120D.150

查看答案和解析>>

同步练习册答案