相关习题
 0  231238  231246  231252  231256  231262  231264  231268  231274  231276  231282  231288  231292  231294  231298  231304  231306  231312  231316  231318  231322  231324  231328  231330  231332  231333  231334  231336  231337  231338  231340  231342  231346  231348  231352  231354  231358  231364  231366  231372  231376  231378  231382  231388  231394  231396  231402  231406  231408  231414  231418  231424  231432  266669 

科目: 来源: 题型:解答题

19.在直角坐标系xOy中,曲线C的方程为y2=10x,直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以坐标原点为极点,以x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C的极坐标方程和直线l的普通方程;
(Ⅱ)设直线l与曲线C交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目: 来源: 题型:解答题

18.在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴的极坐标系中,已知曲线C1的极坐标方程是ρ=$\sqrt{2}$,把C1上各点的纵坐标都压缩为原来的$\frac{{\sqrt{2}}}{2}$倍,得到曲线C2,直线l的参数方程是$\left\{\begin{array}{l}x={x_0}+\frac{{\sqrt{2}}}{2}t\\ y={y_0}+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数).
(Ⅰ)写出曲线C1与曲线C2的直角坐标方程;
(Ⅱ)设M(x0,y0),直线l与曲线C2交于A,B两点,若|MA|•|MB|=$\frac{8}{3}$,求点M轨迹的直角坐标方程.

查看答案和解析>>

科目: 来源: 题型:解答题

17.设直线l过点P(-3,3),且倾斜角为$\frac{5π}{6}$
(1)写出直线l的参数方程;
(2)设此直线与曲线C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=4sinθ}\end{array}\right.$(θ为参数)交A、B两点,求|PA|•|PB|;
(3)设A、B中点为M,求|PM|.

查看答案和解析>>

科目: 来源: 题型:选择题

16.下列不是抛物线y2=4x的参数方程的是(  )
A.$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t为参数)B.$\left\{\begin{array}{l}{x=\frac{{t}^{2}}{4}}\\{y=t}\end{array}\right.$(t为参数)
C.$\left\{\begin{array}{l}{x={t}^{2}}\\{y=2t}\end{array}\right.$(t为参数)D.$\left\{\begin{array}{l}{x=2{t}^{2}}\\{y=2t}\end{array}\right.$(t为参数)

查看答案和解析>>

科目: 来源: 题型:解答题

15.已知矩阵A=$[\begin{array}{l}1-2\\ 3-5\end{array}]$,若矩阵Z满足A-1Z=$[\begin{array}{l}1\\ 1\end{array}]$,试求矩阵Z.

查看答案和解析>>

科目: 来源: 题型:解答题

14.设炮弹发射角为α,发射速度为v0
(1)求子弹弹道曲线的参数方程(不计空气阻力)
(2)若v0=100m/s,α=$\frac{π}{6}$,当炮弹发出2秒时,
①求炮弹高度;
②求出炮弹的射程.

查看答案和解析>>

科目: 来源: 题型:选择题

13.已知函数f(x)=$\frac{ax-1}{x+2}$-e-(x+2)恰有两个零点,则实数a的取值范围是(  )
A.a≥-$\frac{1}{2}$B.a>0C.-$\frac{1}{2}$<a<0D.-$\frac{1}{2}$<a≤0

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知曲线C的参数方程是$\left\{{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}}$(θ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A、B的极坐标分别为A(2,π)、B(2,$\frac{4π}{3}$).
(1)求直线AB的直角坐标方程;
(2)设M为曲线C上的动点,求点M到直线AB距离的最大值.

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知直线l:$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}$,t为参数过定点P,曲线C极坐标方程为ρ=2sinθ,直线l与曲线C交于A,B两点,则|PA|•|PB|值为1.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在平面直角坐标系中,以O为极点,x轴非负半轴为极轴建立极坐标系,已知曲线C的参数方程为$\left\{\begin{array}{l}x=3cosφ\\ y=4sinφ\end{array}\right.(φ为参数)$,直线l的参数方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}t}{2}}\end{array}\right.$(t为参数),直线l与曲线C交于M,N两点.
(1)写出曲线C的普通方程和直线l的普通方程;
(2)求曲线C上任意一点P(x,y)到直线l距离的最大值.

查看答案和解析>>

同步练习册答案