相关习题
 0  231259  231267  231273  231277  231283  231285  231289  231295  231297  231303  231309  231313  231315  231319  231325  231327  231333  231337  231339  231343  231345  231349  231351  231353  231354  231355  231357  231358  231359  231361  231363  231367  231369  231373  231375  231379  231385  231387  231393  231397  231399  231403  231409  231415  231417  231423  231427  231429  231435  231439  231445  231453  266669 

科目: 来源: 题型:解答题

8.设函数f(x)=x2+3x+3-a•ex(a为非零常数).
(1)求g(x)=$\frac{f(x)}{{e}^{x}}$的单调区间;
(2)若f(x)有且仅有一个零点,求a的取值范围;
(3)若存在b,c∈R,且b≠c,使f(b)=f(c),试判断a•f′($\frac{b+c}{2}$)的符号.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=loga(x+$\sqrt{{x}^{2}-1}$),(a>1,x≥1)
(1)求它的反函数f-1(x),并指出它的定义域;
(2)由f-1(n)<$\frac{{2}^{n}+{2}^{-n}}{2}$(n∈N*),求a的取值范围;
(3)设bn=f-1(n),设Sn=b1+b2+…+bn,求证:当a在(2)的范围内对任意自然数n都有Sn<2n$-(\frac{\sqrt{2}}{2})^{n}$.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,⊙O的半径OB垂直于直径AC,M为AO上一点,BM的延长线交⊙O于N,过N点的切线交CA的延长线于P.
(1)求证:PM2=PA•PC;
(2)⊙O的半径为2$\sqrt{3}$,OA=$\sqrt{3}$OM,求MN的长.

查看答案和解析>>

科目: 来源: 题型:解答题

5.在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,且AC=BC=BD=2AE,M是AB的中点.
(1)求证:CM⊥EM;
(2)求CM与平面CDE所成的角的正弦值;
(3)求二面角M-CE-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,四边形ABCD为等腰梯形,PD⊥平面ABCD,F为PC的中点,CD=AD=PD,AB=4AE=2CD.
(Ⅰ)求证:EF⊥PC;
(Ⅱ)求平面PAD与平面PCB所成的角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图所示的七面体是由三棱台ABC-A1B1C1和四棱锥D-AA1C1C对接而成,四边形ABCD是边长为2的正方形,BB1⊥平面⊥ABCD,BB1=2A1B1=2.
(1)求证:平面AA1C1C⊥平面BB1D;
(2)求二面角A一A1D一C1的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,三棱柱ABC一A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1中点,F在AB上,且CF⊥AB,AC=BC=1,AA1=3.
(I)求证:CF∥平面AEB1
(Ⅱ)求平面ABC与平面AB1E所成的锐二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

1.已知函数y=loga(a2-ax-2)在[0,1]上是减函数,则a的取值范围是(2,+∞).

查看答案和解析>>

科目: 来源: 题型:填空题

1.将一个半径为$\sqrt{2}$的球放在一个棱长为2的无盖的正方体上面(球面与正方体上面的四条棱相切),则球心到正方体下底面的距离为3.

查看答案和解析>>

科目: 来源: 题型:填空题

20.已知函数g(x)的图象与函数f(x)=log3x(x>0)的图象关于直线y=x对称,若g(a)•g(b)=9(其中a>0且b>0),则$\frac{1}{a}$+$\frac{4}{b}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

同步练习册答案