相关习题
 0  231268  231276  231282  231286  231292  231294  231298  231304  231306  231312  231318  231322  231324  231328  231334  231336  231342  231346  231348  231352  231354  231358  231360  231362  231363  231364  231366  231367  231368  231370  231372  231376  231378  231382  231384  231388  231394  231396  231402  231406  231408  231412  231418  231424  231426  231432  231436  231438  231444  231448  231454  231462  266669 

科目: 来源: 题型:选择题

18.设F1,F2是椭圆E的两个焦点,P为椭圆E上的点,以PF1为直径的圆经过F2,若tan∠PF1F2=$\frac{{2\sqrt{5}}}{15}$,则椭圆E的离心率为(  )
A.$\frac{{\sqrt{5}}}{6}$B.$\frac{{\sqrt{5}}}{5}$C.$\frac{{\sqrt{5}}}{4}$D.$\frac{{\sqrt{5}}}{3}$

查看答案和解析>>

科目: 来源: 题型:选择题

17.若运行如图所示程序框图,则输出结果S的值为(  )
A.$\frac{3}{7}$B.$\frac{4}{9}$C.$\frac{9}{20}$D.$\frac{5}{11}$

查看答案和解析>>

科目: 来源: 题型:解答题

16.在直用坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3t-3\\ y=4t-9\end{array}\right.$(t为参数).在以原点O为极点,x轴的正半轴为极轴的极坐标系中,圆心A的极坐标为(2,$\frac{2π}{3}}$),圆A的半径为3.
(1)直接写出直线l的直角坐标方程,圆A的极坐标方程;
(2)设B是线l上的点,C是圆A上的点,求|BC|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,三棱柱ABC-A1B1C1中,D为AA1的中点,E为BC的中点.
(1)求证:直线AE∥平面BDC1
(2)若三棱柱 ABC-A1B1C1是正三棱柱,AB=2,AA1=4,求平面BDC1与平面ABC所成二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

14.若函数f(x)=4sin5ax-4$\sqrt{3}$cos5ax的图象的相邻两条对称轴之间的距离为$\frac{π}{3}$,则实数a的值为±$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

13.设数列{an}的通项公式为an=n2+bn,若数列{an}是单调递增数列,则实数b的取值范围为(-3,+∞).

查看答案和解析>>

科目: 来源: 题型:选择题

12.已知焦点在y轴上的双曲线C的中心是原点O,离心率等于$\frac{{\sqrt{5}}}{2}$,以双曲线C的一个焦点为圆心,1为半径的圆与双曲线C的渐近线相切,则双曲线C的方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{4}$=1B.y2-$\frac{x^2}{4}$=1C.$\frac{y^2}{4}$-x2=1D.$\frac{x^2}{4}$-y2=1

查看答案和解析>>

科目: 来源: 题型:选择题

11.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为(  )
A.6B.$\frac{39}{5}$C.$\frac{41}{5}$D.9

查看答案和解析>>

科目: 来源: 题型:填空题

10.已知sinx=$\frac{{\sqrt{5}}}{5}$,x∈($\frac{π}{2}$,$\frac{3π}{2}$),则tanx=$-\frac{1}{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

9.等腰直角三角形ABC中,∠C=90°,AC=BC=1,点M,N分别是AB,BC中点,点P是△ABC(含边界)内任意一点,则$\overrightarrow{AN}$•$\overrightarrow{MP}$的取值范围是(  )
A.[-$\frac{3}{4}$,$\frac{3}{4}$]B.[-$\frac{1}{4}$,$\frac{3}{4}$]C.[-$\frac{3}{4}$,$\frac{1}{4}$]D.[$\frac{1}{4}$,$\frac{3}{4}$]

查看答案和解析>>

同步练习册答案