相关习题
 0  231279  231287  231293  231297  231303  231305  231309  231315  231317  231323  231329  231333  231335  231339  231345  231347  231353  231357  231359  231363  231365  231369  231371  231373  231374  231375  231377  231378  231379  231381  231383  231387  231389  231393  231395  231399  231405  231407  231413  231417  231419  231423  231429  231435  231437  231443  231447  231449  231455  231459  231465  231473  266669 

科目: 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}x=\sqrt{3}+\frac{1}{2}t\\ y=2+\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4.
(Ⅰ)求出曲线C2的直角坐标方程;
(Ⅱ)若C1与C2相交于A,B两点,求线段AB的长.

查看答案和解析>>

科目: 来源: 题型:解答题

14.为了调查某中学学生在周日上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下统计结果:
表1:男生上网时间与频数分布表
 上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
 人数 525  3025  15
表2:女生上网时间与频数分布表
 上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
 人数10  2040  2010 
(1)若该中学共有女生600人,试估计其中上网时间不少于60分钟的人数;
(2)完成表3的2×2列联表,并回答能否有90%的把握认为“学生周日上午时间与性别有关”;
(3)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为10的样本,再从中任取2人,记被抽取的2人中上午时间少于60分钟的人数记为X,求X的分布列和数学期望.
表3
 上网时间少于60分钟  上网时间不少于60分钟合计 
 男生   
 女生   
 合计   
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(k2≥k0 0.50 0.400.25  0.150.10 0.05  0.0250.010  0.0050.001 
k0  0.4550.708  1.3232.072  2.076 3.845.024  6.6357.879  10.828

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=lnx-a(x-1)(其中a>0,e是自然对数的底数).
(Ⅰ)若关于x的方程f(x)=$\frac{1}{2}$x2-$\frac{1}{a}$x+a有唯一实根,求(1+lna)a2的值;
(Ⅱ)若过原点作曲线y=f(x)的切线l与直线y=-ex+1垂直,证明:$\frac{e-1}{e}$<a<$\frac{{e}^{2}-1}{e}$;
(Ⅲ)设g(x)=f(x+1)+ex,当x≥0时,g(x)≥1恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=-x+alnx(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=x2-2x+2a,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

11.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表
使用智能手机不使用智能手机合计
学习成绩优秀4812
学习成绩不优秀16218
合计201030
附表:
p(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
经计算K2=10,则下列选项正确的是:(  )
A.有99.5%的把握认为使用智能手机对学习有影响
B.有99.5%的把握认为使用智能手机对学习无影响
C.有99.9%的把握认为使用智能手机对学习有影响
D.有99.9%的把握认为使用智能手机对学习无影响

查看答案和解析>>

科目: 来源: 题型:选择题

10.如图是求x1,x2…x10的乘积S的程序框图,图中空白框中应填入的内容为(  )
A.S=S×(n+1)B.S=S×xn+1C.S=S×nD.S=S×xn

查看答案和解析>>

科目: 来源: 题型:选择题

9.(普通班做)直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}$(t是参数)被圆x2+y2=9截得的弦长等于(  )
A.$\frac{12}{5}$B.$\frac{{9\sqrt{10}}}{5}$C.$\frac{{9\sqrt{2}}}{5}$D.$\frac{{12\sqrt{5}}}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

8.正方体ABCD-A1B1C1D1
(1)直线D1C与平面AC所成的角;
(2)直线D1B与平面AC所成的角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD都是边长为1的正三角形,DC=2,E为DC的中点.
(I)求证:PA⊥BD;
(Ⅱ)求直线PE与平面PDB所成角的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

6.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,以x轴正半轴为极轴,建立坐标系,曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$,设P为曲线C1上的动点,当点C1到曲线C2上点的距离最小时,点P的直角坐标为$(\frac{3}{2},\frac{1}{2})$.

查看答案和解析>>

同步练习册答案