相关习题
 0  231280  231288  231294  231298  231304  231306  231310  231316  231318  231324  231330  231334  231336  231340  231346  231348  231354  231358  231360  231364  231366  231370  231372  231374  231375  231376  231378  231379  231380  231382  231384  231388  231390  231394  231396  231400  231406  231408  231414  231418  231420  231424  231430  231436  231438  231444  231448  231450  231456  231460  231466  231474  266669 

科目: 来源: 题型:解答题

5.已知x+y+z=0且xyz=2,求|x|+|y|+|z|的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=2|x-1|-a,g(x)=-|2x+m|,a,m∈R,若关于x的不等式g(x)≥-1的整数解有且仅有一个值为-2.
(1)求整数m的值;
(2)若函数y=f(x)的图象恒在函数y=$\frac{1}{2}$g(x)的上方,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=|x|+|x+1|.
(I)?m∈R,使得m2+2m+f(t)=0成立,求实数t的取值范围;
(Ⅱ)设g(x)=$\left\{\begin{array}{l}{-\frac{1}{{2}^{x}},(0<x<\frac{1}{2})}\\{f(x),(x≤0)}\end{array}\right.$,求函数|g(x)|的值域.

查看答案和解析>>

科目: 来源: 题型:填空题

2.直三棱柱ABC-A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D为BC的中点.则直线DB1与平面A1C1D所成角的正弦值$\frac{4}{15}\sqrt{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

1.如图所示,在长方体ABCD-A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN.
(1)求直线A1D与AM所成角的余弦值;
(2)求直线AD与平面ANM所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图所示,四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,PA=AB=2,点F是PB的中点,点E在棱BC上移动.
(1)当E为BC的中点时,试判断EF与平面PAC的位置关系,并请说明理由;
(2)当E为BC的中点时,求直线EF与平面PDE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.设A,B是平面α同侧的两点,点O∈α,OA,OB是平面α的斜线,射线OA,OB在α内的射线分别是射线OA′,OB′,若∠A′OB′=$\frac{π}{2}$,则∠AOB是锐角(锐角、直角或钝角)

查看答案和解析>>

科目: 来源: 题型:解答题

18.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数).在以原点O为极点,x轴正半轴为极轴的极坐标中,曲线C的方程为ρ2cos2θ+4ρ2sin2θ=4.直线l交曲线C与A、B两点.
(Ⅰ)求|AB|;
(Ⅱ)若点P为曲线C上任意一点,求△PAB面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.已知曲线C1:$\left\{\begin{array}{l}{x=-4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),C2:$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=1+sinθ}\end{array}\right.$(θ为参数).
(1)化C1、C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若曲线C1和C2相交于A,B两点,求|AB|

查看答案和解析>>

科目: 来源: 题型:解答题

16.为了调查某中学学生在周日上网的瞬间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下统计结果:
表1:男生上网时间与频数分布表
上网时间(分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
人 数525302515
表2:女生上网时间与频数分布表
上网时间 (分钟)[30,40)[40,50)[50,60)[60,70)[70,80]
人数1020402010
(1)若该中学共有女生600人,试估计其中上网时间不少于60分钟的人数;
(2)完成表3的2×2列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(3)从表3的男生“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取2人,求至少有一人上网时间不少于60分钟的概率.
表3
上网时间少于60分钟上网时间不少于60分钟合计
男生
女生
合计
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案