相关习题
 0  231282  231290  231296  231300  231306  231308  231312  231318  231320  231326  231332  231336  231338  231342  231348  231350  231356  231360  231362  231366  231368  231372  231374  231376  231377  231378  231380  231381  231382  231384  231386  231390  231392  231396  231398  231402  231408  231410  231416  231420  231422  231426  231432  231438  231440  231446  231450  231452  231458  231462  231468  231476  266669 

科目: 来源: 题型:解答题

5.求使不等式|$\frac{3n}{n+1}$-3|<$\frac{1}{100}$成立的最小正整数n.

查看答案和解析>>

科目: 来源: 题型:填空题

4.(1)当x∈R时.y=|x-1|+|x+2|的最小值为3
(2)当x∈R时,y=|x-1|-|x+2|的最小值为-3,最大值为3.

查看答案和解析>>

科目: 来源: 题型:解答题

3.对于任意实数a,b,已知|a-b|≤1,|2a-1|≤1,且恒有|4a-3b+2|≤m,求实数m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知|a|=5,|b|=3,且|a+b|=|a|+|b|,求a+b的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.求不等式|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|≤M(a2+b2+c22对所有实数a,b,c都成立的最小的M值.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,AB=PA=4,A点在PD上的射影为G点,E点在AB上,平面PCE⊥平面PCD.
(1)求证:AG⊥平面PCD;
(2)求直线PD与平面PCE所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

19.在平面直角坐标系中,以坐标原点为极点,x轴的非负半轴为极轴建立坐标系.已知曲线C的极坐标方程为ρ=2cosθ.直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+2}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C和直线l的普通方程方程;
(2)设曲线C和直线l相交于A,B两点,求弦长|AB|.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知四棱锥中,PA⊥平面ABCD,底面ABCD是边长为4的菱形,∠BAD=120°,PA=3.
(Ⅰ)求证:平面PBD⊥平面PAC;
(Ⅱ)设AC与BD交于点O,M为OC中点,求PM与平面PAD所成角的正切值.

查看答案和解析>>

科目: 来源: 题型:填空题

17.如图,在三棱锥P-ABC中,PA⊥平面ABC,∠ACB=90°,F为线段PC上一点,E为线段PB上一点,PA=AB=2,AC=$\frac{{2\sqrt{3}}}{3}$,则当AF+FE取最小值时,AE与平面PBC所成角的正弦值为$\frac{3\sqrt{19}}{19}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.直线x-y-3=0被圆$\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}\right.$(θ为参数)截得的弦长是(  )
A.3$\sqrt{2}$B.4C.3D.4$\sqrt{2}$

查看答案和解析>>

同步练习册答案