相关习题
 0  231289  231297  231303  231307  231313  231315  231319  231325  231327  231333  231339  231343  231345  231349  231355  231357  231363  231367  231369  231373  231375  231379  231381  231383  231384  231385  231387  231388  231389  231391  231393  231397  231399  231403  231405  231409  231415  231417  231423  231427  231429  231433  231439  231445  231447  231453  231457  231459  231465  231469  231475  231483  266669 

科目: 来源: 题型:填空题

16.已知一个平行六面体的各棱长都等于2,并且以顶点A为端点的各棱间的夹角都等于60°,则该平行六面体中平面ABB1A1与平面ABCD夹角的余弦值为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

15.如图,在正方体ABCD-A1B1C1D1中,E,F,M,N分别是A1B1,BC,C1D1和B1C1的中点.
(1)求证:平面MNF⊥平面NEF;
(2)求二面角M-EF-N的平面角正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E、F分别是PC、PD的中点,PA=$\sqrt{3}$AD.
(1)在线段BC上求作一点G,使得平面EFG∥平面PAB;
(2)在(1)的条件下,求平面EFG与平面PCD所成的二面角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,已知SA=AB=BC=1,以SC为斜边的Rt△SAC≌Rt△SBC,且$\overrightarrow{AC}•\overrightarrow{SB}=\frac{3}{4}$.
(1)求二面角A-SB-C的余弦值;
(2)求异面直线AS,BC所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知Rt△ABC,斜边BC?α,点A∈α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

11.如图,在直三棱柱ABC-A1B1C1中,AA1=AB=BC=$\frac{3}{2}$AC,D是AC的中点.
(1)求点B1到平面A1BD的距离.
(2)求二面角A-A1B-D的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

10.在正方体AC1中.
(1)平面A1ADD1与平面ABCD所成的二面角的度数;
(2)平面ABC1D1与平面ABCD所成的二面角的度数.

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,ABCD-A1B1C1D1是正四棱柱.
(Ⅰ)求证:BD⊥平面ACC1A1
(Ⅱ)若C1C=$\frac{\sqrt{6}}{2}$AB,求二面角C1-BD-C的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

8.观察教室相邻的两个墙面与地面可以构成几个二面角?分别指出构成这些二面角的面、棱、平面角及其度数.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知二面角α-l-β的平面角为θ,A,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,若AB=AC=BD=1,CD=2,则θ=120°.

查看答案和解析>>

同步练习册答案