相关习题
 0  231290  231298  231304  231308  231314  231316  231320  231326  231328  231334  231340  231344  231346  231350  231356  231358  231364  231368  231370  231374  231376  231380  231382  231384  231385  231386  231388  231389  231390  231392  231394  231398  231400  231404  231406  231410  231416  231418  231424  231428  231430  231434  231440  231446  231448  231454  231458  231460  231466  231470  231476  231484  266669 

科目: 来源: 题型:解答题

6.四面体ABCD及其三视图如图所示,点E、F、G、H分别是棱AB、BD、DC、CA的中点.
(1)证明:四边形EFGH是矩形;
(2)求四面体ABCD的表面积.
(3)求直线AB与平面EFGH夹角θ的正弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

5.如图:直三棱柱ABC-A1B1C1,底面三角形ABC中,CA=CB=1,∠ACB=90°,棱AA1=2,M、N分别为A1B1、AB的中点.
(1)求证:平面A1NC∥平面BMC1
(2)求异面直线A1C与C1N所成角的大小;
(3)求点A到平面A1NC的距离;
(4)直线A1N与平面ACC1A1所成角的大小;
(5)二面角A1-CN-A的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

4.如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=$\sqrt{3}$.
(1)求证:BC1∥平面A1DC;             
(2)求二面角D-A1C-A的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

3.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1)证明:PB∥平面AEC;
(2)设置AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{\sqrt{3}}{4}$,求A到平面PBD的距离.
(3)设二面角D-AE-C为60°,AP=1,AD=$\sqrt{3}$,求三棱锥E-ACD的体积.

查看答案和解析>>

科目: 来源: 题型:解答题

2.如图,在四面体ABCD中,CB=CD,AD⊥平面BCD,且E是BD的中点,求证:
(1)平面ACE⊥平面ABD;
(2)若CD=$\sqrt{2}$,AD=3,CB⊥CD,求二面角C-AB-D的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知二面角α-l-β的棱上有两点A,B,P为平面β上一点,PB⊥AB,PA与AB成45°,PA与α成30°角,求这个二面角的大小.

查看答案和解析>>

科目: 来源: 题型:填空题

20.长方体ABCD-A1B1C1D1中,AA1=1,D1C与平面ABCD所成的角为30°,BC1与BC所成的角为45°,则二面角D1-AC-B的正切值为$-\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.点P是边长为2的正△ABC的边BC的中点,将△ACP沿AP折起,使得二面角C-AP-B为直二面角,点M为线段AC的中点,点N在线段BC上,且BN=2NC.
(Ⅰ)求四棱锥P-ABNM的体积;
(Ⅱ)求二面角M-PN-B的平面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知在三棱锥P-ABC中,∠ABC=90°,PA=PB=PC.
(1)求证:平面PAC⊥平面ABC;
(2)若AB=BC=PA,求二面角B-PA-C的平面角的正切值.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图,已知斜三棱柱ABC-A1B1C1的所有棱长均为2,侧棱BB1与底面ABC所成的角为$\frac{π}{3}$,且侧面ABB1A1⊥底面ABC.
(1)求证:B1C⊥AC1
(2)若M为A1C1的中点.求二面角B1-AC-M的余弦值.

查看答案和解析>>

同步练习册答案