相关习题
 0  231291  231299  231305  231309  231315  231317  231321  231327  231329  231335  231341  231345  231347  231351  231357  231359  231365  231369  231371  231375  231377  231381  231383  231385  231386  231387  231389  231390  231391  231393  231395  231399  231401  231405  231407  231411  231417  231419  231425  231429  231431  231435  231441  231447  231449  231455  231459  231461  231467  231471  231477  231485  266669 

科目: 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=2+2cosα\\ y=2sinα\end{array}\right.$(α为参数),曲线C2的参数方程为$\left\{\begin{array}{l}x=2cosβ\\ y=2+2sinβ\end{array}\right.$(β为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(Ⅰ)求曲线C1和曲线C2的极坐标方程;
(Ⅱ)已知射线l1:θ=α(0<α<$\frac{π}{2}$),将射线l1顺时针旋转$\frac{π}{6}$得到射线l2:θ=α-$\frac{π}{6}$,且射线l1与曲线C1交于O、P两点,射线l2与曲线C2交于O、Q两点,求|OP|•|OQ|的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

15.四棱锥P-ABCD中,底面ABCD为矩形,侧面PAB⊥底面ABCD.
(1)证明:平面PDA⊥平面PBA;
(2)若AB=2,BC=$\sqrt{2}$,PA=PB,四棱锥P-ABCD的体积为$\frac{{2\sqrt{6}}}{3}$,求BD与平面PAD所成的角.

查看答案和解析>>

科目: 来源: 题型:解答题

14.某课题组对春晚参加“咻一咻”抢红包活动的同学进行调查,按照使用手机系统不同(安卓系统和IOS系统)分别随机抽取5名同学进行问卷调查,发现他们咻得红包总金额数如表所示:
手机系统
安卓系统(元)253209
IOS系统(元)431897
(1)如果认为“咻”得红包总金额超过6元为“咻得多”,否则为“咻得少”,请判断手机系统与咻得红包总金额的多少是否有关?
(2)要从5名使用安卓系统的同学中随机选出2名参加一项活动,以X表示选中的同学中咻得红包总金额超过6元的人数,求随机变量X的分布列及数学期望E(X).
下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
独立性检验统计量${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{3}$ax3-$\frac{3}{2}$x2+x,a∈R.
( 1)若曲线y=f(x)在x=x0处的切线方程为y=x-2,求a的值;
(2)若f′(x)是f(x)的导函数,且不等式f′(x)≥xlnx恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

12.设函数f(x)=|x+2|+|x-a|(a∈R).
(1)若不等式f(x)+a≥0恒成立,求实数a的取值范围;
(2)若不等式$f(x)≥\frac{3}{2}x$恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.随着智能手机的发展,微信越来越成为人们交流的一种方式.某机构对使用微信交流的态度进行调查,随机调查了 50 人,他们年龄的频数分布及对使用微信交流赞成人数如表.
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75)
频数510151055
赞成人数51012721
(I)由以上统计数据填写下面 2×2 列联表,并判断是否有99%的把握认为年龄45岁为分界点对使用微信交流的态度有差异;
年龄不低于45岁的人年龄低于45岁的人合计
赞成
不赞成
合计
(Ⅱ)若对年龄在[55,65),[65,75)的被调查人中随机抽取两人进行追踪调查,记选中的4人中赞成使用微信交流的人数为X,求随机变量X的分布列和数学期望
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.0500.0100.001
k03.8416.63510.828

查看答案和解析>>

科目: 来源: 题型:解答题

10.由一点S出发作三条射线,SA、SB、SC,若∠ASB=60°,∠ASC=45°,∠BSC=90°,求SA与平面SBC所成的角的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知f(x)=(x-2)ex+ax2+x,a∈R.
(1)当$a=-\frac{1}{2}$时,求f(x)的单调区间;
(2)证明:当a∈[-2,0]时,f(x)<f′(x)总成立(f′(x)是f(x)的导函数).

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知矩阵M=$[\begin{array}{l}{a}&{2}\\{4}&{b}\end{array}]$的属于特征值8的一个特征向量是e=$[\begin{array}{l}{1}\\{1}\end{array}]$,点P(-1,2)在M对应的变换作用下得到点Q,求Q的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=axlnx-x+1(a≥0).
(1)当a=1时,求f(x)的最小值;
(2)若x∈(1,+∞),f(x)>0恒成立,求实数a的取值范围;
(3)证明:当m>n>1时,mn-1<nm-1

查看答案和解析>>

同步练习册答案