相关习题
 0  231294  231302  231308  231312  231318  231320  231324  231330  231332  231338  231344  231348  231350  231354  231360  231362  231368  231372  231374  231378  231380  231384  231386  231388  231389  231390  231392  231393  231394  231396  231398  231402  231404  231408  231410  231414  231420  231422  231428  231432  231434  231438  231444  231450  231452  231458  231462  231464  231470  231474  231480  231488  266669 

科目: 来源: 题型:解答题

6.设函数f(x)=ex(1+lnx).
(Ⅰ)求曲线f(x)在(1,f(1))处的切线方程;
(Ⅱ)证明:e2f(x)>e-$\frac{2{e}^{x}}{x}$.

查看答案和解析>>

科目: 来源: 题型:解答题

5.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人紧急转移安置,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离路率市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成(0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率直方图:
(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款救援,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况图,根据图表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
 经济损失不超过4000元经济损失超过4000元合计
捐款超过500元a=30b 
捐款不超过500元cd=6 
合计   
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

4.微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下,对它们抢到的红包个数进行统计,得到如表数据:
型号
手机品牌
甲品牌(个)438612
乙品牌(个)57943
(Ⅰ)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请据此判断是否有85%的把握认为抢到的红包个数与手机品牌有关?
(Ⅱ)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.
①求在型号Ⅰ被选中的条件下,型号Ⅱ也被选中的概率;
②以X表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量X的分布列及数学期望E(X).
下面临界值表供参考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=|x+2|+|x+m|(m<2),若f(x)的最小值为1.
(1)试求实数m的值;
(2)求证:log2(2a+2b)-m≥$\frac{a+b}{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.已知不等式:|x-1|-|x+3|<a的解集为R,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目: 来源: 题型:解答题

1.某中学为了普及奥运会知识和提高学生参加体育运动的积极性,举行了一次奥运知识竞赛.随机抽取了30名学生的成绩,绘成如图所示的茎叶图,若规定成绩在75分以上(包括75分)的学生定义为甲组,成绩在75分以下(不包括75分)定义为乙组.
(Ⅰ)在这30名学生中,甲组学生中有男生7人,乙组学生中有女生12人,试问有没有90%的把握认为成绩分在甲组或乙组与性别有关;
(Ⅱ)记甲组学生的成绩分别为x1,x2,…,x12,执行如图所示的程序框图,求输出的S的值;
(Ⅲ)竞赛中,学生小张、小李同时回答两道题,小张答对每道题的概率均为$\frac{1}{3}$,小李答对每道题的概率均为$\frac{1}{2}$,两人回答每道题正确与否相互独立.记小张答对题的道数为a,小李答对题的道数为b,X=|a-b|,写出X的概率分布列,并求出X的数学期望.

附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$;其中n=a+b+c+d
独立性检验临界表:
P(K2>k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知函数f(x)=x2+3|x-a|(a∈R).
(Ⅰ)若f(x)在[-1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)-m(a);
(Ⅱ)设b∈R,若|f(x)+b|≤3对x∈[-1,1]恒成立,求3a+b的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知适合不等式|x2-4x+p|+|x-3|≤5的x的最大值为3.
(1)求p的值;
(2)求x的范围.

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知函数f(x)=2x-a,g(x)=xex,若对任意x1∈[0,1]存在x2∈[-1,1],使f(x1)=g(x2)成立,则实数a的取值范围为[2-e,$\frac{1}{e}$].

查看答案和解析>>

科目: 来源: 题型:解答题

17.某校为了解本校学生在校小卖部的月消费情况,随机抽取了60名学生进行统计.得到如表样本频数分布表:
月消费金额(单位:元)[0,100)[100,200)[200,300)[300,400)[400,500)≥500
人数30691032
记月消费金额不低于300元为“高消费”,已知在样本中随机抽取1人,抽到是男生“高消费”的概率为$\frac{1}{6}$.
(Ⅰ)从月消费金额不低于400元的学生中随机抽取2人,求至少有1人月消费金额不低于500元的概率;
(Ⅱ)请将下面的2×2列联表补充完整,并判断是否有90%的把握认为“高消费”与“男女性别”有关,说明理由.
高消费非高消费合计
男生102030
女生52530
合计154560
下面的临界值表仅供参考:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
(参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

同步练习册答案