相关习题
 0  231295  231303  231309  231313  231319  231321  231325  231331  231333  231339  231345  231349  231351  231355  231361  231363  231369  231373  231375  231379  231381  231385  231387  231389  231390  231391  231393  231394  231395  231397  231399  231403  231405  231409  231411  231415  231421  231423  231429  231433  231435  231439  231445  231451  231453  231459  231463  231465  231471  231475  231481  231489  266669 

科目: 来源: 题型:解答题

16.4月23日是世界读书日,为提高学生对读书的重视,让更多的人畅游于书海中,从而收获更多的知识,某高中的校学生会开展了主题为“让阅读成为习惯,让思考伴随人生”的实践活动,校学生会实践部的同学随即抽查了学校的40名高一学生,通过调查它们是喜爱读纸质书还是喜爱读电子书,来了解在校高一学生的读书习惯,得到如表列联表:
 喜欢读纸质书不喜欢读纸质书合计
16420
81220
合计241640
(Ⅰ)根据如表,能否有99%的把握认为是否喜欢读纸质书籍与性别有关系?
(Ⅱ)从被抽查的16名不喜欢读纸质书籍的学生中随机抽取2名学生,求抽到男生人数ξ的分布列及其数学期望E(ξ).
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下列的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目: 来源: 题型:选择题

15.为了研究色盲与性别的关系,调查了1000人,得到了如表的数据,则(  )
合计
正常442514956
色盲38644
合计4805201000
A.99.9%的把握认为色盲与性别有关B.99%的把握认为色盲与性别有关
C.95%的把握认为色盲与性别有关D.90%的把握认为色盲与性别有关

查看答案和解析>>

科目: 来源: 题型:选择题

14.在曲线$\left\{\begin{array}{l}{x=1+{t}^{2}+{t}^{4}}\\{y={t}^{3}-3t+2}\end{array}\right.$(t为参数)上的点是(  )
A.(0,2)B.(-1,6)C.(1,3)D.(3,4)

查看答案和解析>>

科目: 来源: 题型:解答题

13.在直角坐标系xOy中,直线?的参数方程为$\left\{\begin{array}{l}x=\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.$(以t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=cosθ.
(Ⅰ)把C的极坐标方程化为普通方程;
(Ⅱ)求?与C交点的极坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知极坐标的极点在平面直角坐标的原点O处,极轴与x轴的正半轴重合,且长度单位相同,若点P为曲线C:$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)上的动点,直线l的极坐标方程为ρcos(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$m(m>2)
(1)将曲线C的参数方程化为普通方程,直线l的极坐标方程化为直角坐标方程;
(2)若曲线C上有且只有一点P到直线l的距离为2,求实数m的值和点P的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

11.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图:

(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民捐款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如图,根据图表格中所给数据,分别求b,c,a+b,c+d,a+c,b+d,a+b+c+d的值,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过4000元经济损失超过4000元合计
捐款超过500元a=30b
捐款不超过500元cd=6
合计
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:填空题

10.若方程($\frac{6}{5}$)x=$\frac{1+a}{1-a}$有负数解,求a的取值范围(-1,0).

查看答案和解析>>

科目: 来源: 题型:填空题

9.方程log3x+x-2=0的解的个数是1.

查看答案和解析>>

科目: 来源: 题型:填空题

8.方程($\frac{1}{3}$)x+x-2=0的解的个数是2.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=$\frac{2alnx}{x+1}$+b在x=1处的切线方程为x+y-3=0.
(1)求a,b.
(2)证明:当x>0,且x≠1时,f(x)>$\frac{2lnx}{x-1}$.

查看答案和解析>>

同步练习册答案