相关习题
 0  231296  231304  231310  231314  231320  231322  231326  231332  231334  231340  231346  231350  231352  231356  231362  231364  231370  231374  231376  231380  231382  231386  231388  231390  231391  231392  231394  231395  231396  231398  231400  231404  231406  231410  231412  231416  231422  231424  231430  231434  231436  231440  231446  231452  231454  231460  231464  231466  231472  231476  231482  231490  266669 

科目: 来源: 题型:填空题

6.将y=$\frac{2}{x}$的图象沿x轴方向左平移2个单位,再沿y轴方向向下平移1个单位,所得到的函数解析式为y=-$\frac{x}{x+2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

5.双曲线的一条渐近线方程是y=$\sqrt{3}$x,焦点是(-4,0),(4,0),则双曲线方程为$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知关于x的不等式|2x-m|<1的整数解有且仅有一个为2,其中m∈Z.
(1)求m的值;
(2)设ab=m,a>b>0,证明:$\frac{{{a^2}+{b^2}}}{a-b}$≥4$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

3.甲、乙两所学校高三年级分别有600人,500人,为了了解两所学校全体高三年级学生在该地区五校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如表:
甲校:
分组[70,80)[80,90)[90,100)[100,110)
频数34714
分组[110,120)[120,130)[130,140)[140,150]
频数17x42
乙校:
分组[70,80)[80,90)[90,100)[100,110)
频数1289
分组[110,120)[120,130)[130,140)[140,150]
频数1010y4
(1)计算x,y的值;
(2)若规定考试成绩在[120,150]内为优秀,由以上统计数据填写下面的2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异?
甲校乙校总计
优秀
非优秀
总计

查看答案和解析>>

科目: 来源: 题型:解答题

2.2015年10月29日夜里,全面放开二胎的消息一公布,迅速成为人们热议的热点,为此,某网站进行了一次民意调查,参与调查的网民中,年龄分布情况如图所示:
(1)若以频率代替概率,从参与调查的网民中随机选取1人进行访问,求其年龄恰好在[30,40)之间的概率;
(2)若从参与调查的网民中按照分层抽样的方法选取100人,其中30岁以下计划要二胎的有25人,年龄不低于30岁的计划要二胎的有30人,请以30岁为分界线,以是否计划要二胎的人数建立分类变量.
①填写下列2×2列联表:
计划要二胎不计划要二胎合计
30岁以下
不低于30岁
合计
②试分析是否有90%以上的把握认为计划要二胎与年龄有关?
P(K2≥k00.150.100.05
k02.0722.7063.841
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目: 来源: 题型:解答题

1.表是某校某班(共30人)在一次半期考试中的数学和地理成绩(单位:分)
学号123456789101112131415
数学成绩1271361371291171291249910810795107105123113
地理成绩907272747045786284687670547676
 
学号161718192021222324252627282930
数学成绩8610984688069587958604271285040
地理成绩566656604060585058425638404450
将数学成绩分为两个层次:数学I(大于等于100分)与数学Ⅱ(低于100分),地理也分为两个层次:地理I(大于等于67分)与地理Ⅱ(低于67分).
(I)根据这次考试的成绩完成如下2×2联表,运用独立性检验的知识进行探究,可否有99.9%的把握认为“数学成绩与地理成绩有关”?
  地理Ⅰ 地理Ⅱ 
 数学Ⅰ 11  
 数学Ⅱ  15 
    30
(II)从数学与地理成绩分属不同层次的同学中任取两名,求抽到的同学数学成绩都为层次I的概率.
可能用到的公式和参考数据:K2的统计量:K2=$\frac{{({a+b+c+d}){{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
独立性检验临界值表(部分):
 P(K2≥k0 0.050 0.025 0.010 0.005 0.001
 k0 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目: 来源: 题型:解答题

20.为了调查某地区成年人血液的一项指标,现随机抽取了成年男性、女性各10人组成的一个样本,对他们的这项血液指标进行了检测,得到了如下茎叶图.根据医学知识,我们认为此项指标大于40为偏高,反之即为正常.
(Ⅰ)依据上述样本数据研究此项血液指标与性别的关系,完成下列2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为此项血液指标与性别有关系?
正常偏高合计
男性
女性
合计
(Ⅱ)现从该样本中此项血液指标偏高的人中随机抽取2人去做其它检测,求恰好有一名男性和一名女性被抽到的概率.
参考数据:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
(参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知在直角坐标系xoy中,圆C的参数方程为$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}\right.$(θ为参数).
(Ⅰ)求圆C的普通方程;
(Ⅱ)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

18. 2016年全国两会,即中华人民共和国第十二届全国人民代表大会第四次会议和中国人民政治协商会议第十二届全国委员会第四次会议,分别于2016年3月5日和3月3日在北京开幕.为了解哪些人更关注两会,某机构随抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:[15,25),[25,35),[35,45),[55,65),[65,75].把年龄落在区间[15,35)和[35,75]内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”和“中老年人”的人数之比为9:11.
(1)求图中a、b的值根;
(2)若“青少年人”中有15人关注两会,根据已知条件完成下面的2×2列联表,根据此统计结果能否有99%的把握认为“中老年人”比“青少年人”更加关注两会?
关注不关注合计
青少年人15
中老年人
合计5050100
附:参考公式和临界值表:
P(K2≥k00.050.010.001
k03.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

17.某校从参加高三模拟考试的学生中随机抽取100名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如图部分频率分布直方图,其中成绩在[130,150]的称为“优秀”,其它的称为“一般”,观察图形的信息,回答下列问题:
(1)求分数在[120,130)内的人数及数学成绩“优秀”的人数;
(2)用分层抽样的方法在在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段在分数段[120,130)内的概率.
(3)若统计了这100名学生的地理成绩后得到如下表格:
数学成绩“优秀”数学成绩“一般”总计
地理成绩“优秀”104050
地理成绩“一般”203050
总计3070100
则能否在犯错误的概率不超过0.05的前提下,认为“数学成绩是否优秀与地理成绩是否优秀有关系”?
下面的临界值表供参考:
 P(K2≥k) 0.15 0.10 0.05 0.025
 k 2.072 2.706 3.841 5.024
K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$.

查看答案和解析>>

同步练习册答案