相关习题
 0  231303  231311  231317  231321  231327  231329  231333  231339  231341  231347  231353  231357  231359  231363  231369  231371  231377  231381  231383  231387  231389  231393  231395  231397  231398  231399  231401  231402  231403  231405  231407  231411  231413  231417  231419  231423  231429  231431  231437  231441  231443  231447  231453  231459  231461  231467  231471  231473  231479  231483  231489  231497  266669 

科目: 来源: 题型:解答题

14.某网络媒体为了解其市场占有率,随机抽取50位网民,调查他们是否为该网络媒体的会员,结果如下:
 是否为会员
性别
 是否 
 男生 20
 女生 1015 
(I)已按性别采用分层抽样的方式从这50位网民中抽取了6人,为进一步了解他们对该媒体的满意度,需从这6人中随机选取2人进行问卷调查,求选取的2人中有女生的概率;
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为网民是否为该媒体会员与性别有关?下面的临界值表供参考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
独立性检验统计量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图所示,AB为圆D的直径,BC为圆O的切线,过A作OC的平行线交圆O于D,BD与OC相交于E.
(I)求证:CD为圆O的切线;
(Ⅱ)若OA=AD=4,求OC的长.

查看答案和解析>>

科目: 来源: 题型:解答题

12.定义:和三角形一边和另两边的延长线同时相切的圆叫做三角形这边上的旁切圆.如图所示,已知:⊙I是△ABC的BC边上的旁切圆,E、F分别是切点,AD⊥IC于点D.
(1)试探究:D、E、F三点是否同在一条直线上?证明你的结论.
(2)设AB=AC=5,BC=6,如果△DIE和△AEF的面积之比等于m,$\frac{DE}{EF}=n$,试作出分别以$\frac{m}{n}、\frac{n}{m}$为两根且二次项系数为6的一个一元二次方程.

查看答案和解析>>

科目: 来源: 题型:选择题

11.已知函数$f(x)=\left\{\begin{array}{l}-{x^2}+ax,x>0\\{2^x}-1,x≤0\end{array}\right.$有两个零点,则实数a的取值范围为(  )
A.(-∞,0)B.(0,1]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

10.如图,四边形ABCD为正方形,以AB为直径 的半圆E与以C为圆心CB为半径的圆弧相交于点P,过点P作圆C的切线PF交AD于点F,连接CP.
(Ⅰ)证明:CP是圆E的切线;
(Ⅱ)求$\frac{AF}{PF}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=a-$\frac{1}{x}$-lnx,g(x)=ex-ex+1.
(Ⅰ)若a=2,求函数f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)=0恰有一个解,求a的值;
(Ⅲ)若g(x)≥f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.已知椭圆C的左、右焦点F1,F2在x轴上,左顶点为A,离心率e=$\frac{\sqrt{3}}{2}$,过原点O的直线(与x轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点,△PF1F2的周长为8+4$\sqrt{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)求$\overrightarrow{{F}_{1}M}•\overrightarrow{{F}_{1}N}$的值;
(Ⅲ)求四边形MF1NF2面积的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

7.二面角α-1-β,γ-a-δ,平面α⊥平面γ,平面β⊥平面δ,且两二面角大小分别为θ1和θ2,则θ1和θ2的关系为不确定.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图,AC⊥面BCD,BD⊥面ACD,若AC=CD=1,∠ABC=30°,求二面角C-AB-D的大小的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

5.正方形ABCD所在平面外一点P,有PA=PB=PC=PD=AB,则二面角P-AB-C的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案