相关习题
 0  231305  231313  231319  231323  231329  231331  231335  231341  231343  231349  231355  231359  231361  231365  231371  231373  231379  231383  231385  231389  231391  231395  231397  231399  231400  231401  231403  231404  231405  231407  231409  231413  231415  231419  231421  231425  231431  231433  231439  231443  231445  231449  231455  231461  231463  231469  231473  231475  231481  231485  231491  231499  266669 

科目: 来源: 题型:选择题

14.已知函数f(x)=(x2-3)ex,则关于x的方程f2(x)-mf(x)-$\frac{12}{{e}^{2}}$=0的实根个数可能是(  )
A.3B.1C.3或5D.1或3或5

查看答案和解析>>

科目: 来源: 题型:填空题

13.如图,四棱锥S-ABCD的底面是正方形,每条侧棱的长都是底面边长的$\sqrt{2}$倍,P为侧棱SD上的点.
(1)求证:AC⊥SD;
(2)若SD⊥平面PAC,求二面角P-AC-D的大小.

查看答案和解析>>

科目: 来源: 题型:解答题

12.国内某大学有男生6000人,女生4000人,该校想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该校学生平均每天运动的时间范围是[0,3],若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”,根据调查的数据按性别与“是否为‘运动达人’”进行统计,得到如表2×2列联表.
运动时间
性别 
运动达人非运动达人合计
男生 36  
女生  26 
合计  100 
(1)请根据题目信息,将2×2类联表中的数据补充完整,并通过计算判断能否在犯错误频率不超过0.025的前提下认为性别与“是否为‘运动达人’”有关;
(2)将此样本的频率估计为总体的概率,随机调查该校的3名男生,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:解答题

11.设函数f(x)=lnx+$\frac{a}{x-1}$(a为常实数)
(Ⅰ)若?x0∈[e,e2],(e为自然对数的底数,且e≈2.71828…),使得f(x0)>0,求实数a的取值范围;
(Ⅱ)若实数a>0,函数f(x)在(0,$\frac{1}{e}$)内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:f(x2)-f(x1)>2e-$\frac{4}{3}$(e=2.71828…)

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知函数F(x)=-ax+lnx+1(a∈R).
(1)讨论函数F(x)的单调性;
(2)定义在R上的偶函数f(x)在[0,+∞)上递减,若不等式f(F(x))+f(ax-lnx-1)≥2f(1)对x∈[1,3]恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

9.若函数f(x)=|x-1|+|x-2|+…+|x-99|+|x-100|,求函数f(x)的最小值.

查看答案和解析>>

科目: 来源: 题型:填空题

8.设a为实数,若函数y=$\frac{3}{x}$图象上存在三个不同的点A(x1,y1),B(x2,y2),C(x3,y3),满足x1+y2=x2+y3=x3+y1=a,则a的值为±$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.已知函数f(x)=(a+1)x-lnx(a∈R).
(Ⅰ)若函数f(x)在点P(1,f(1))处的切线与直线y=2x+1垂直,求实数a的值;
(Ⅱ)若函数f(x)在x∈(0,e]上的最小值为3,求实数a的值;
(Ⅲ)当x∈(0,e]时,证明:e2x2-xlnx>lnx+$\frac{5}{2}$x.

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知关于x的方程4x2+4(k+2)x+(2k2+2k+1)=0的两实根为α,β,则(α+1)(β+1)的取值范围是[-$\frac{7}{8}$,$\frac{9}{4}$].

查看答案和解析>>

科目: 来源: 题型:解答题

5.函数f(x)=|x-1|+|x-2|.
(1)求不等式f(x)<3的解集;
(2)不等式f(x)≤a(x+$\frac{1}{2}$)的解集非空,求实数a的取值范围.

查看答案和解析>>

同步练习册答案