相关习题
 0  231306  231314  231320  231324  231330  231332  231336  231342  231344  231350  231356  231360  231362  231366  231372  231374  231380  231384  231386  231390  231392  231396  231398  231400  231401  231402  231404  231405  231406  231408  231410  231414  231416  231420  231422  231426  231432  231434  231440  231444  231446  231450  231456  231462  231464  231470  231474  231476  231482  231486  231492  231500  266669 

科目: 来源: 题型:解答题

4.设关于x的方程k•9x-k•3x+1+6(k-5)=0在[0,2]内有解,求k的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

3.过点P(2,1)作圆x2+y2=1的两条切线PA,PB,其中A、B为切点,求直线AB方程.

查看答案和解析>>

科目: 来源: 题型:解答题

2.广播电台为了了解某地区的听众对某个戏曲节目的收听情况,随机抽取了100名听众进行调查,下面是根据调查结果绘制的听众日均收听该节目的频率分布直方图,将日均收听该节目时间不低于40分钟的听众成为“戏迷”
(Ⅰ)根据已知条件完成2×2列联表,并判断“戏迷”与性别是否有关?
“戏迷”非戏迷总计
1055
总计
附:K2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$,
 P(K2≥k) 0.05 0.01
 k 3.841 6.635
(Ⅱ)将上述调查所得到的频率当作概率.现在从该地区大量的听众中,采用随机抽样的方法每次抽取1名听众,抽取3次,记被抽取的3名听众中“戏迷”的人数为X,若每次抽取的结果相互独立,求X的分布列,数学期望及方差.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知a为实数,函数f(x)=alnx+x2-4x
(1)当a=1时,求函数f(x)在x=1处的切线方程;
(2)设g(x)=(a-2)x,若?x∈[$\frac{1}{e}$,e],使得f(x)≥g(x)成立,求实数a的取值范围.
(3)定义:若函数m(x)的图象上存在两点A、B,设线段AB的中点为P(x0,y0),若m(x)在点Q(x0,m(x0))处的切线l与直线AB平行或重合,则函数m(x)是“中值平均函数”,切线l叫做函数m(x)的“中值平均切线”.试判断函数f(x)是否是“中值平均函数”?若是,判断函数f(x)的“中值平均切线”的条数;若不是,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,等腰直角三角形ACB中,∠ACB=90°,圆心O为AB的中点,AC切圆O于点D.
(I)证明:BC为圆O的切线;
(Ⅱ)连接BD,作CH⊥DB,H为垂足,作HF⊥BC,F为垂足,求$\frac{BF}{DH}$的值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.圆C经过直线x+y-1=0与x2+y2=4的交点,且圆C的圆心为(-2,-2),则过点(2,4)向圆C作切线,所得切线方程为x=2和5x-12y+38=0.

查看答案和解析>>

科目: 来源: 题型:填空题

18.如图,PA与圆O相切于点A,割线PO与圆O交于C,D两点,DE垂直直径AB于E,且2OE=OB=1,则PC等于1.

查看答案和解析>>

科目: 来源: 题型:填空题

17.如图,圆O与等腰直角三角形ABC的两直角边相切,交斜边BC于F,G两点,且BF=FG=$\sqrt{2}$,则圆O的半径等于1.

查看答案和解析>>

科目: 来源: 题型:选择题

16.直线y=kx+2k与圆(x-1)2+y2=4相交于M,N两点,若|MN|≤2,则k的取值范围是(  )
A.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]B.(-∞,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,+∞)C.[-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$]D.(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{2}}{2}$]∪[$\frac{\sqrt{2}}{2}$,$\frac{2\sqrt{5}}{5}$)

查看答案和解析>>

科目: 来源: 题型:填空题

15.已知点A(1,1),B(1,3),圆C:(x-a)2+(y+a-2)2=4上存在点P,使得PB2-PA2=32,则圆心横坐标a的取值范围为[7,9].

查看答案和解析>>

同步练习册答案