相关习题
 0  231313  231321  231327  231331  231337  231339  231343  231349  231351  231357  231363  231367  231369  231373  231379  231381  231387  231391  231393  231397  231399  231403  231405  231407  231408  231409  231411  231412  231413  231415  231417  231421  231423  231427  231429  231433  231439  231441  231447  231451  231453  231457  231463  231469  231471  231477  231481  231483  231489  231493  231499  231507  266669 

科目: 来源: 题型:选择题

14.若全集为实数R,集合A={x||2x-1|>3},B={x|y=$\frac{4}{\sqrt{x-1}}$},则(∁RA)∩B=(  )
A.{x|-1≤x≤2}B.{x|1<x≤2}C.{x|1≤x≤2}D.

查看答案和解析>>

科目: 来源: 题型:解答题

13.如图,在半球O的直径AB的延长线上取一点P,作PC的切半圆O于点C,又经过P任作一直线交半圆O于点M、N,过C作CD⊥AB,垂足为D
(1)求证:M、O、D、N四点共圆;
(2)求证:∠MDC=∠NDC.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知椭圆C:OM=ON(a>b>0)的左右焦点为F1、F2,点A(2,$\sqrt{2}$)在椭圆C上,且AF2与x轴垂直.
(1)求椭圆C的方程;
(2)过A作直线与椭圆C交于另外一点B,O为坐标原点,若三角形AOB的面积为$\frac{2\sqrt{2}}{3}$,求直线AB的斜率.

查看答案和解析>>

科目: 来源: 题型:填空题

11.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+2y-4≤0}\\{x-y+a≤0}\\{x≥1}\end{array}\right.$,且z=$\frac{3}{2}$x+y的最大值为4,则实数a=-1.

查看答案和解析>>

科目: 来源: 题型:填空题

10.由下面样本数据利用最小二乘法求出的线性回归方程是$\widehat{y}$=0.7x+m,则实数m=0.35.
x3456
y2.5344.5

查看答案和解析>>

科目: 来源: 题型:选择题

9.若函数f(x)=-$\frac{1}{2}$x2-3x+tlnx在(1,+∞)上是减函数,则实数t的取值范围是(  )
A.(-∞,2)B.(-∞,2]C.(-∞,4)D.(-∞,4]

查看答案和解析>>

科目: 来源: 题型:选择题

8.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的右焦点为F,过F且垂直于x轴的直线与双曲线的渐近线在第一象限交于点A,点O为坐标原点,点H满足$\overrightarrow{FH}$•$\overrightarrow{OA}$=0,$\overrightarrow{OA}$=4$\overrightarrow{OH}$,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

7.下列命题正确的是(  )
A.三条两两相交的直线一定在同一面内
B.垂直于同一条直线的两条直线一定平行
C.m,n是平面α内的两条相交直线,l1,l2是平面β内的两条相交直线,若m∥l1,n∥l2,则α∥β
D.α,β,η是三个不同的平面,若α⊥η,β⊥η,则α∥β

查看答案和解析>>

科目: 来源: 题型:选择题

6.已知函数f(x)=x2-cosx,则下列不等式成立的是(  )
A.f(sin$\frac{π}{6}$)>f(cos$\frac{π}{6}$)B.f(sin$\frac{π}{3}$)>f(cos$\frac{π}{3}$)C.f(sin$\frac{2π}{3}$)>f(cos$\frac{2π}{3}$)D.f(sin$\frac{3π}{4}$)>f(cos$\frac{3π}{4}$)

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知直线l:x-y+2=0与圆C:x2+y2-2y-2m=0相离,则实数m的取值范围是(  )
A.(-∞,0)B.(-$\frac{1}{2}$,+∞)C.(-∞,-$\frac{1}{4}$)D.(-$\frac{1}{2}$,-$\frac{1}{4}$)

查看答案和解析>>

同步练习册答案