相关习题
 0  231314  231322  231328  231332  231338  231340  231344  231350  231352  231358  231364  231368  231370  231374  231380  231382  231388  231392  231394  231398  231400  231404  231406  231408  231409  231410  231412  231413  231414  231416  231418  231422  231424  231428  231430  231434  231440  231442  231448  231452  231454  231458  231464  231470  231472  231478  231482  231484  231490  231494  231500  231508  266669 

科目: 来源: 题型:选择题

4.为了加入大学的学生会,甲、乙两位大一新生分别在7个部门中选择4个进行面试,则他们所选的面试部门中,恰有3个相同的选法有(  )种.
A.210B.420C.630D.840

查看答案和解析>>

科目: 来源: 题型:选择题

3.已知cosα=$\frac{\sqrt{2}}{3}$,α∈($\frac{3π}{2}$,2π),则sin($α+\frac{5π}{6}$)的值为(  )
A.$\frac{\sqrt{21}+\sqrt{2}}{6}$B.$\frac{\sqrt{21}-\sqrt{2}}{6}$C.$\frac{-\sqrt{21}+\sqrt{2}}{6}$D.$\frac{-\sqrt{21}-\sqrt{2}}{6}$

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知命题p:?x∈N*,3x2-2x+5>lnx,则¬p为(  )
A.?x∈N*,3x2-2x+5<lnxB.?x∈N*,3x2-2x+5≤lnx
C.?x∈N*,3x2-2x+5<lnxD.?x∈N*,3x2-2x+5≤lnx

查看答案和解析>>

科目: 来源: 题型:选择题

1.若复数z满足z(2+i)=3-5i,则复数z的实部为(  )
A.-$\frac{13i}{5}$B.-$\frac{13}{5}$C.$\frac{1}{5}$D.$\frac{13}{5}$

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{6}}{3}$,长轴长为2$\sqrt{3}$,直线l:y=kx+m交椭圆于不同的两点A,B.
(1)求椭圆的方程;
(2)若以AB为直径的圆恰过坐标原点O,证明:原点O到直线l的距离为定值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.设集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函数f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2},x∈A}\\{lo{g}_{2}(2-x),x∈B}\end{array}\right.$,若f(x0)∈A,则x0的取值范围是(2-$\sqrt{2}$,1];若x0∈A,且f[f(x0)]∈A,则x0的取值范围是($\frac{3}{2}-\sqrt{2}$,$\frac{1}{2}$).

查看答案和解析>>

科目: 来源: 题型:填空题

18.已知等差数列{an}中,a3+a7=16,S10=85,则等差数列{an}公差为1.

查看答案和解析>>

科目: 来源: 题型:填空题

17.一个几何体的三视图为如图所示的三个直角三角形,则该几何体表面的直角三角形的个数为4个.

查看答案和解析>>

科目: 来源: 题型:选择题

16.在棱长为1的正方体ABCD-A1B1C1D1中,点F是棱CC1的中点,P是正方体表面上的一点,若D1P⊥AF,则线段D1P长度的取值范围是(  )
A.(0,$\sqrt{2}$)B.(0,$\frac{\sqrt{34}}{4}$]C.(0,$\frac{3}{2}$]D.(0,$\sqrt{3}$]

查看答案和解析>>

科目: 来源: 题型:选择题

15.下列函数中,是奇函数且在其定义域内为单调函数的是(  )
A.y=$\frac{-1}{x}$B.y=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$C.y=ex+e-xD.y=-x|x|

查看答案和解析>>

同步练习册答案