相关习题
 0  231350  231358  231364  231368  231374  231376  231380  231386  231388  231394  231400  231404  231406  231410  231416  231418  231424  231428  231430  231434  231436  231440  231442  231444  231445  231446  231448  231449  231450  231452  231454  231458  231460  231464  231466  231470  231476  231478  231484  231488  231490  231494  231500  231506  231508  231514  231518  231520  231526  231530  231536  231544  266669 

科目: 来源: 题型:解答题

7.设函数f(x)=ex+ln(x+1)-ax.
(Ⅰ)当a=2时,证明:函数f(x)在定义域内单调递增;
(Ⅱ)当x≥0时,f(x)≥cosx恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

6.如图所示,△ABC中,AC=1,AB=2,∠ACB=$\frac{π}{2}$,P为AB的中点,且△ABC与正方形BCDE所在平面互相垂直.
(1)求证:AD∥平面PCE;
(2)求二面角P-CE-B的余弦值.

查看答案和解析>>

科目: 来源: 题型:选择题

5.如图,点D在AB上,E在AC上.且∠B=∠C,那么补充下列一个条件后仍无法判定△ABE≌△ACD的是(  )
A.AE=ADB.∠AEB=∠ADCC.CE=BDD.AB=AC

查看答案和解析>>

科目: 来源: 题型:选择题

4.下列命题中,正确的是(  )
A.有两边及一边的对角对应相等的两个三角形全等
B.两边相等的两直角三角形全等
C.有两个角及第三个角的对边对应相等的两个三角形全等
D.有两个角及一边相等的两个三角形全等

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知函数f(x)=|x+1|+|x-m|(m>0).
(1)若f(x)≥5恒成立,求m的取值范围;
(2)在(1)的条件下,记m的最小值是m0,若$\frac{1}{{a}^{2}}$+$\frac{4}{{b}^{2}}$+$\frac{9}{{c}^{2}}$=m0,则当a,b,c取何值时,a2+4b2+9c2取得最小值,并求出该最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知AB、CD为梯形ABCD的底,对角线AC、BD的交点为O,且AB=8,CD=6,BD=15,求OB、OD的长.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知动圆过点M(2,0),且被y轴截得的线段长为4,记动圆圆心的轨迹为曲线C.
(1)求曲线C的方程;
(2)问:x轴上是否存在一定点P,使得对于曲线C上的任意两点A和B,当$\overrightarrow{AM}$=λ$\overrightarrow{MB}$(λ∈R)时,恒有△PAM与△PBM的面积之比等于$\frac{|PA|}{|PB|}$?若存在,则求P点的坐标,否则说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知抛物线C的顶点在坐标原点且关于x轴对称,直线x-y+1=0与C有唯一的公共点.
(1)求抛物线C的方程;
(2)已知直线l与C交于A,B两点,点M(1,t)在线段AB上,又点P的坐标为(1,2),若△PAM与△PBM的面积之比等于$\frac{|PA|}{|PB|}$,问:l的斜率是否为定值?若是则求此定值,否则说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知点A(-$\sqrt{2}$,0)和圆B:(x-$\sqrt{2}$)2+y2=16,点Q在圆B上,线段AQ的垂直平分线角BQ于点P.
(1)求点P的轨迹C的方程;
(2)轨迹C上是否存在直线2x+y+1=0对称的两点,若存在,设这两个点分别为S,T,求直线ST的方程,若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

18.如图,点A,B分别在射线l1:y=2x(x≥0),l2:y=-2x(x≥0)上运动,且S△AOB=4.
(1)求x1•x2
(2)求线段AB的中点M的轨迹方程;
(3)判定中点M到两射线的距离积是否是为定值,若是则找出该值并证明;若不是定值说明理由.

查看答案和解析>>

同步练习册答案