相关习题
 0  231356  231364  231370  231374  231380  231382  231386  231392  231394  231400  231406  231410  231412  231416  231422  231424  231430  231434  231436  231440  231442  231446  231448  231450  231451  231452  231454  231455  231456  231458  231460  231464  231466  231470  231472  231476  231482  231484  231490  231494  231496  231500  231506  231512  231514  231520  231524  231526  231532  231536  231542  231550  266669 

科目: 来源: 题型:解答题

7.在△ABC中,求证:a2+b2+c2=2(bccosA+cacosB+abcosC).

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知数列{an}满足a1=$\frac{1}{2}$,an+1an-2an+1+1=0,n∈N*,求证:数列{$\frac{1}{{a}_{n}-1}$}是等差数列.

查看答案和解析>>

科目: 来源: 题型:解答题

5.(1)求函数y=|x-1|+|x-3|的最小值及对应自变量x的取值;
(2)求函数y=|x-1|+|x-2|+|x-3|的最小值及对应自变量x的取值;
(3)求函数y=|x-1|+|x-2|+|x-3|+…+|x-n|的最小值及对应自变量x的取值;
(4)求函数y=|x-1|+|2x-1|+|3x-1|+|4x-1|+|5x-1|+|6x-1|的最小值及对应自变量x的取值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=xcosx-sinx(x>0).
(1)求函数f(x)在点(${\frac{π}{2}$,f(${\frac{π}{2}}$))处的切线方程;
(2)记xn为f(x)的从小到大的第n(n∈N*)个极值点,证明:不等式$\frac{1}{x_1^2}$+$\frac{1}{x_2^2}$+$\frac{1}{x_3^2}$+…+$\frac{1}{x_n^2}$<$\frac{7}{{4{π^2}}}$(n∈N*).

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知与定点O(0,0),A(0,3)的距离比为$\frac{1}{2}$的点P的轨迹为曲线C,过点B(0,2)的直线l与曲线C交于M,N两点.
(1)求曲线C的轨迹方程;
(2)判断$\overrightarrow{BM}$•$\overrightarrow{BN}$是否为定值?若是求出这个定值,若不是请说明理由;
(3)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=1,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知椭圆C的左右顶点分别为A(-2,0),B(2,0),椭圆上除A、B外的任一点C满足kAC•kBC=-$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)过点P(4,0)任作一条直线l与椭圆C交于不同的两点M,N,在x轴上是否存在点Q,使得∠PQM+∠PQN=180°?若存在,求出点Q的坐标;若不存在,请说明现由.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=x2-x+alnx,a∈R.
(1)当a=1时,求曲线y=f(x)在(1,f(1))处的切线方程;
(2)若?x0∈[1,e],使得f(x0)-(1+a)x0≥0,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

20.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是(  )
A.(-∞,-3]B.[3,+∞)C.[-3,3]D.(-∞,-3]∪[3,+∞)

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=lnx+$\frac{b}{x}$-a(x>0,a,b∈R).
(Ⅰ)讨论函数f(x)的单调区间与极值;
(Ⅱ)若b>0且f(x)≥0恒成立,求ea-1-b+1的最大值;
(Ⅲ)在(Ⅱ)的条件下,且ea-1-b+1取得最大值时,设F(b)=$\frac{a-1}{b}$-m(m∈R),且函数F(x)有两个零点x1,x2,求实数m的取值范围,并证明:x1x2>e2

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知函数f(x)=lnx+$\frac{b}{x}$-a(x>0,a,b∈R).
(Ⅰ)讨论函数f(x)的单调区间与极值;
(Ⅱ)若?a∈[0,π],使得f(x)≥1+sina对任意x>0恒成立,求b的取值范围;
(Ⅱ)当b>0时,若函数f(x)有且仅有一个零点,设F(b)=$\frac{a-1}{b}$-m(m∈R),且函数F(x)有两个零点x1,x2,求实数m的取值范围,并证明:x1x2>e2

查看答案和解析>>

同步练习册答案