相关习题
 0  231362  231370  231376  231380  231386  231388  231392  231398  231400  231406  231412  231416  231418  231422  231428  231430  231436  231440  231442  231446  231448  231452  231454  231456  231457  231458  231460  231461  231462  231464  231466  231470  231472  231476  231478  231482  231488  231490  231496  231500  231502  231506  231512  231518  231520  231526  231530  231532  231538  231542  231548  231556  266669 

科目: 来源: 题型:解答题

16.已知椭圆C1:$\frac{x^2}{4}+\frac{y^2}{3}=1$,抛物线C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB过椭圆C1的右焦点.
(1)当AB⊥x轴时,求p,m的值,并判断抛物线C2的焦点是否在直线AB上;
(2)若抛物线C2的焦点在直线AB上,求直线AB的方程.

查看答案和解析>>

科目: 来源: 题型:选择题

15.已知函数$f(x)=\frac{lnx}{1+x}-lnx$在x=x0处取得最大值,给出下列5个式子:
①f(x0)<x0,②f(x0)=x0,③f(x0)>x0,④$f({x_0})<\frac{1}{2}$,⑤$f({x_0})>\frac{1}{2}$.则其中正确式子的序号为(  )
A.①和④B.②和④C.②和⑤D.③和⑤

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知数列{an}的通项公式an=$\frac{an}{bn+1}$,且a2=$\frac{6}{5}$,a3=$\frac{9}{7}$.
(1)求an
(2)求证:an<an+1
(3)求证:an∈[1,$\frac{3}{2}$).

查看答案和解析>>

科目: 来源: 题型:解答题

13.点O是平行四边形ABCD的中点,E,F分别在边CD,AB上,且$\frac{CE}{ED}$=$\frac{AF}{FB}$=$\frac{1}{2}$.求证:点E,O,F在同一直线上.

查看答案和解析>>

科目: 来源: 题型:选择题

12.如图,点P是∠BAC内一点,且P到AB、AC的距离PE=PG,则下列哪一个能作为△PEA≌△PGA的理由(  )
A.HLB.AASC.SSSD.ASA

查看答案和解析>>

科目: 来源: 题型:填空题

11.已知抛物线C:y2=2px(p>0)的准线方程为x=-1,过定点M(m,0)(m>0)作斜率为k的直线l交抛物线C于A,B两点,E是M点关于坐标原点O的对称点,若直线AE和BE的斜率分别为k1,k2,则k1+k2=0.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知CD是圆上的一条弦,延长CD与B点使得CD=BD,过D作BC的中垂线在中垂线上找到一点A使得AB⊥AC,连接AC交圆与H点连接BH,分别交AD与F点,交圆与G点,连接DG.求证:四边形ABDG有外接圆.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知抛物线x2=4y,斜率为k的直线l过其焦点F且与抛物线相交于点A(x1,y1),B(x2,y2
(1)求直线L的一般式方程;
(2)求△AOB的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图,抛物线y=-x2+4交x轴于A,B两点,顶点为C
(1)求△ABC的面积;
(2)在抛物线上求点P,使S△PAB=$\frac{1}{2}$S△ABC
(3)抛物线y=-x2+4上是否存在点Q,使∠AQB=90°若存在,求出该点;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

7.设函数f(x)=1nx-ax,其中a为实数.
(1)若a=1,求证:f(x)≤-1恒成立;
(2)若函数f(x)在区间(1,+∞)上任意两点的连线段的斜率都小于4,求实数a的最小值;
(3)若方程f(x)=-$\frac{a-1}{2}$x2有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案