相关习题
 0  231374  231382  231388  231392  231398  231400  231404  231410  231412  231418  231424  231428  231430  231434  231440  231442  231448  231452  231454  231458  231460  231464  231466  231468  231469  231470  231472  231473  231474  231476  231478  231482  231484  231488  231490  231494  231500  231502  231508  231512  231514  231518  231524  231530  231532  231538  231542  231544  231550  231554  231560  231568  266669 

科目: 来源: 题型:选择题

2.若直线a∥平面α,直线b?α,a⊥b,则在平面α内到直线a和直线b距离相等的点的轨迹是(  )
A.B.抛物线C.椭圆D.双曲线

查看答案和解析>>

科目: 来源: 题型:选择题

1.曲线y2=2px(p>0)与圆(x-2)2+y2=3在x轴上方交于A、B两点,线段AB的中点在y=x上,则p=(  )
A.$\frac{7+\sqrt{17}}{4}$B.$\frac{7-\sqrt{17}}{4}$C.$\frac{7+\sqrt{17}}{4}$或$\frac{7-\sqrt{17}}{4}$D.$\frac{7-2\sqrt{17}}{4}$

查看答案和解析>>

科目: 来源: 题型:选择题

20.点P在曲线E:y=ex上,若存在过P的直线交曲线E于另一点A,交直线l:y=x-1于点B,且|PA|=|AB|,则称点P为“好点”,那么下列结论中正确的是(  )
A.曲线E上的所有点都是“好点”
B.曲线E上仅有有限个点是“好点”
C.曲线E上的所有点都不是“好点”
D.曲线E上有无穷多个点(但不是所有的点)是“好点”

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知函数f(x)=ax-1-axlnx(x>0,0<a≤1).
(1)求函数f(x)的最大值;
(2)设g(x)=$\frac{lnx}{ax-1}$,当a∈(0,1]时,试讨论函数g(x)的单调性;
(3)利用(2)的结论,证明:当n>m>0时,(1+n)m<(1+m)n

查看答案和解析>>

科目: 来源: 题型:解答题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的中心在坐标原点,焦点在x轴上,它过点(0,1),离心率为$\frac{2\sqrt{5}}{5}$.
(1)求椭圆C的标准方程;
(2)过椭圆C的左焦点F作直线l交椭圆C于G,H两点,交y轴于点M,若$\overrightarrow{MG}=m\overrightarrow{FG}$,$\overrightarrow{MH}$=n$\overrightarrow{FH}$,判断m+n是否为定值,若为定值,请求出该定值,若不是请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

17.(实验班)设动点P(x,y)到定点F($\frac{1}{2}$,0)的距离比到y轴的距离大$\frac{1}{2}$.记点P的轨迹为曲线C.
(1)求点P的轨迹方程;
(2)设圆M过A(1,0),且圆心M在P(x≥0)的轨迹上,BD是圆M在y轴上截得的弦,当圆心M运动时弦长BD是否为定值?说明理由;
(3)过F($\frac{1}{2}$,0)作互相垂直的两直线交曲线C(x≥0)于G、H、R、S,求四边形GRHS面积的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

16.已知函数$f(x)=x-\frac{1}{x}$,
(1)求函数f(x)的单调区间;
(2)当x∈[1,2]时,若函数y=f(x)-m有零点,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

15.在平面直角坐标系xOy中,已知椭圆C过点(0,2),其焦点为F1(-$\sqrt{5}$,0),F2($\sqrt{5}$,0).
(1)求椭圆C的标准方程;
(2)已知点P在椭圆C上,且PF1=4,求△PF1F2的面积.

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$短轴长2,离心率$\frac{{\sqrt{2}}}{2}$
(1)求椭圆的方程;
(2)若y=kx+m与x2+y2=$\frac{2}{3}$相切,与椭圆交于A,B两点,当A,B两点横坐标不相等时,证明以AB为直径的圆恰过原点O.

查看答案和解析>>

科目: 来源: 题型:解答题

13.平面内有两个定点A(1,0),B(1,-2),设点P到A的距离为d1,到B的距离为d2,且$\frac{d_1}{d_2}=\sqrt{2}$.
(1)求点P的轨迹C的方程;
(2)点M(0,1)与点N关于直线x-y=0对称,问:是否存在过点N的直线l,l与轨迹C相交于E、F两点,且使三角形${S_{△OEF}}=2\sqrt{2}$(O为坐标原点)?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案