相关习题
 0  231375  231383  231389  231393  231399  231401  231405  231411  231413  231419  231425  231429  231431  231435  231441  231443  231449  231453  231455  231459  231461  231465  231467  231469  231470  231471  231473  231474  231475  231477  231479  231483  231485  231489  231491  231495  231501  231503  231509  231513  231515  231519  231525  231531  231533  231539  231543  231545  231551  231555  231561  231569  266669 

科目: 来源: 题型:解答题

12.若数列bn=$\frac{n-2}{{2}^{n}}$,如果对任意的n∈N*,都有$\frac{7}{8}$+bn≤t2恒成立,求实数t的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

11.(理科)如图所示的封闭曲线C由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和曲线C2:y=nx2-1(y<0)组成,已知曲线C1过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$,点A、B分别为曲线C与x轴、y轴的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)若点Q是曲线C2上的任意点,求△QAB面积的最大值及点Q的坐标;
(Ⅲ)若点F为曲线C1的右焦点,直线l:y=kx+m与曲线C1相切于点M,且与直线x=$\frac{4\sqrt{3}}{3}$交于点N,求证:以MN为直径的圆过点F.

查看答案和解析>>

科目: 来源: 题型:解答题

10.(文科)如图所示的封闭曲线C由曲线C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0,y≥0)和曲线C2:x2+y2=r2(y<0)组成,已知曲线C1过点($\sqrt{3}$,$\frac{1}{2}$),离心率为$\frac{\sqrt{3}}{2}$,点A、B分别为曲线C与x轴、y轴的一个交点.
(Ⅰ)求曲线C1和C2的方程;
(Ⅱ)若点Q是曲线C2上的任意点,求△QAB面积的最大值;
(Ⅲ)若点F为曲线C1的右焦点,直线l:y=kx+m与曲线C1相切于点M,与x轴交于点N,直线OM与直线x=$\frac{4\sqrt{3}}{3}$交于点P,求证:MF∥PN.

查看答案和解析>>

科目: 来源: 题型:选择题

9.正方体ABCD-A1B1C1D1的棱长为2,点M是棱AB上异于点A的一点,点P是平面ABCD内的一动点,且点P到直线A1D1的距离的平方比到点M的距离的平方大4,则点P的轨迹形状为(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目: 来源: 题型:选择题

8.点A为平面α内一点,点B为平面α外一点,直线AB与平面α成60°角,平面α内有一动点P,当∠ABP=45°时,则动点P的轨迹为(  )
A.椭圆B.C.双曲线的一支D.抛物线

查看答案和解析>>

科目: 来源: 题型:解答题

7.过椭圆x2+3y2=6上一点A(-$\sqrt{3}$,1),任作两条倾斜角互补的直线,与椭圆相交于B、C两点.
(1)求证直线BC的斜率为定值;
(2)求△ABC的面积S的最大值.

查看答案和解析>>

科目: 来源: 题型:选择题

6.如图,有一张长为16,宽为8的矩形纸片ABCD,以EF为折痕(E在边AB上,F在边BC或CD上),使每次折叠后点B都落在AD边上,此时将B记为B′,过B′作B′T∥CD交EF于T点,则T点的轨迹所在的曲线是(  )
A.双曲线的一支B.椭圆C.抛物线D.直线

查看答案和解析>>

科目: 来源: 题型:解答题

5.设椭圆中心在原点O,焦点在x轴上,离心率为$\frac{\sqrt{2}}{2}$,椭圆上一点P到两焦点的距离之和等于$\sqrt{6}$.
(1)求椭圆方程;
(2)若直线x+y+m=0交椭圆于A、B两点,且OA⊥OB,求实数m的值.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率是$\frac{\sqrt{3}}{2}$,抛物线y2=8x的焦点是该椭圆C的一个顶点,直线l:y=k(x+1)(k>0)与椭圆C相交于A(x1,y1),B(x2,y2)两点.
(1)求椭圆C的标准方程;
(2)若线段AB的中点的横坐标为-$\frac{1}{2}$,求直线l的斜率以及弦长|AB|.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知椭圆C的焦点与双曲线$\frac{{x}^{2}}{3}$-y2=1的焦点相同,且该椭圆的离心率是$\frac{1}{2}$.
(1)求椭圆C的标准方程;
(2)直线l过原点且斜率为$\frac{4}{3}$,求以椭圆的右焦点为圆心且与直线l相切的圆的方程.

查看答案和解析>>

同步练习册答案