相关习题
 0  231379  231387  231393  231397  231403  231405  231409  231415  231417  231423  231429  231433  231435  231439  231445  231447  231453  231457  231459  231463  231465  231469  231471  231473  231474  231475  231477  231478  231479  231481  231483  231487  231489  231493  231495  231499  231505  231507  231513  231517  231519  231523  231529  231535  231537  231543  231547  231549  231555  231559  231565  231573  266669 

科目: 来源: 题型:填空题

12.正四棱锥S-ABCD的底面边长为2,高为1,E是边BC的中点,动点P在四棱锥表面上运动,并且总保持PE⊥AC,则动点P的轨迹的周长为$\sqrt{2}$+$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$({1,\frac{3}{2}})$,离心率为$\frac{1}{2}$,设A、B椭圆C上异于左顶点P的两个不同点,直线PA和PB的倾斜角分别为α和β,且α+β为定值θ(0<θ<π)
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明直线AB恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$经过点$({1,\frac{{2\sqrt{3}}}{3}})$,离心率为$\frac{{\sqrt{3}}}{3}$,过椭圆的右焦点F作互相垂直的两条直线分别交椭圆于A,B和C,D,且M,N分别为AB,CD的中点.
(Ⅰ)求椭圆的方程;
(Ⅱ)证明:直线MN过定点,并求出这个定点;
(Ⅲ)当AB,CD的斜率存在时,求△FMN面积的最大值.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点和短轴的两个顶点构成的四边形是一个正方形,且其周长为4$\sqrt{2}$.
(1)求椭圆C的方程;
(2)设过点B(0,m)(m>0)的直线l与椭圆C相交于E,F两点,点B关于原点的对称点为D,若点D总在以线段EF为直径的圆内,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

8.在平面直角坐标系xOy中,设点P(x,5)在矩阵M=$[{\begin{array}{l}1&2\\ 3&4\end{array}}]$对应的变换下得到点Q(y-2,y),
求${M^{-1}}[{\begin{array}{l}x\\ y\end{array}}]$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.在平面直角坐标系xOy中,已知圆C1:(x-4)2+(y-5)2=4和圆C2:(x+3)2+(y-1)2=4
(1)若直线l1过点A(2,0),且与圆C1相切,求直线l1的方程;
(2)若直线l2过点B(4,0),且被圆C2截得的弦长为2$\sqrt{3}$,求直线l2的方程;
(3)直线l3的方程是x=$\frac{5}{2}$,证明:直线l3上存在点P,满足过P的无穷多对互相垂直的l4和l5,它们分别与圆C1和圆C2相交,且直线l4被圆C1截得的弦长与直线l5被圆C2截得的弦长相等.

查看答案和解析>>

科目: 来源: 题型:填空题

6.如果圆C:(x-a)2+(y-a)2=200上总存在两个点到原点的距离为5$\sqrt{2}$,则圆心C到直线3x+4y=0距离d的取值范围是(7,21).

查看答案和解析>>

科目: 来源: 题型:选择题

5.直线x-ky+1=0与圆x2+y2=1的位置关系是(  )
A.相交B.相离C.相交或相切D.相切

查看答案和解析>>

科目: 来源: 题型:选择题

4.在正三棱锥P-ABC中,底面边长AB=$\sqrt{2}$,侧棱PA=1,M,N分别是线段PA,BC上的动点(可以和端点重合),则|MN|的取值范围是(  )
A.[$\frac{\sqrt{2}}{2}$,$\sqrt{2}$]B.[$\frac{1}{2},\sqrt{2}$]C.[$\frac{\sqrt{2}}{2}$,$\sqrt{3}$]D.[$\frac{1}{2}$,$\sqrt{3}$]

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知圆C的方程为(x+a)2+y2=16,F点坐标为(-6,0),过点F且斜率k=1的直线与圆相交所得的弦长为2$\sqrt{14}$.
(1)求圆C的方程;
(2)若圆心在点F的右侧,在平面上是否存在定点P,使得对圆C上任意的点G有$\frac{\left|GF\right|}{\left|GP\right|}$=$\frac{1}{2}$?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案