相关习题
 0  231386  231394  231400  231404  231410  231412  231416  231422  231424  231430  231436  231440  231442  231446  231452  231454  231460  231464  231466  231470  231472  231476  231478  231480  231481  231482  231484  231485  231486  231488  231490  231494  231496  231500  231502  231506  231512  231514  231520  231524  231526  231530  231536  231542  231544  231550  231554  231556  231562  231566  231572  231580  266669 

科目: 来源: 题型:解答题

3.已知正三棱锥S-ABC底面边长为2$\sqrt{3}$,过侧棱SA与底面中心O作截面SAD,在△SAD中,若SA=AD,求侧面与底面所成二面角的余弦值.

查看答案和解析>>

科目: 来源: 题型:解答题

2.已知平面四边形ABCD中,DA=AB=BC,AB⊥AD,∠ABC=135°,现沿对角线BD将△ABD折起,使平面ABD⊥平面CBD
(Ⅰ)求证:AD⊥平面ABC;
(II)在线段AC上是否存在一个点P,使得直线DP和平面ABC所成角为60°?若存在,确定点P的位置;若不存在,说明理由.

查看答案和解析>>

科目: 来源: 题型:选择题

1.若三阶行列式$|\begin{array}{l}{{a}_{11}}&{{a}_{12}}&{{a}_{13}}\\{{a}_{21}}&{{a}_{22}}&{{a}_{23}}\\{{a}_{31}}&{{a}_{32}}&{{a}_{33}}\end{array}|$=M,则$|\begin{array}{l}{-3{a}_{11}}&{-3{a}_{12}}&{-3{a}_{13}}\\{-3{a}_{21}}&{-3{a}_{22}}&{-3{a}_{23}}\\{-3{a}_{31}}&{-3{a}_{32}}&{-3{a}_{33}}\end{array}|$=(  )
A.-9MB.9MC.27MD.-27M

查看答案和解析>>

科目: 来源: 题型:解答题

19.设集合A={x|-2≤x≤5},B={x|x2-3mx+2m2-m-1<0}.
(1)当x∈Z时,求A的非空真子集的个数.
(2)若B=∅,求m的取值范围.
(3)若A?B,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

18.设点P为圆C1:x2+y2=2上的动点,过点P作x轴的垂线,垂足为Q,点M满足$\sqrt{2}$$\overrightarrow{MQ}$=$\overrightarrow{PQ}$.
(1)求点M的轨迹C2的方程;
(2)过直线x=2上的点T作圆C1的两条切线,设切点分别为A、B,若直线AB与(1)中的曲线C2交与C、D两点,求$\frac{{|{CD}|}}{{|{AB}|}}$的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

17.如图所示,△ABC与△DBC是边长均为2的等边三角形,且所在两平面互相垂直,EA⊥平面ABC,且EA=$\sqrt{3}$.
(1)求证:DE∥平面ABC
(2)若2$\overrightarrow{CM}$=$\overrightarrow{ME}$,求多面体DMAEB的体积.

查看答案和解析>>

科目: 来源: 题型:填空题

16.通讯卫星C在赤道上空3R(R为地球半径)的轨道上,它每24小时绕地球一周,所以它定位于赤道上某一点的上空.如果此点与某地A(北纬60°)在同一条子午在线,则在A观察此卫星的仰角的正切值为$\frac{3}{6}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(1-x)(x<0)}\\{g(x)+1(x>0)}\end{array}\right.$,若f(x)是奇函数,则g(3)=-3.

查看答案和解析>>

科目: 来源: 题型:填空题

14.已知函数f(x)=x3-2x+3,g(x)=log2x+m,对任意的x1,x2∈[1,4]有f(x1)>g(x2)恒成立,则实数m的取值范围是(-∞,0).

查看答案和解析>>

科目: 来源: 题型:填空题

13.方程x2-2x+p=0的解集为A,方程x3+qx2+rx=0(r≠0)的解为A∪B={0,-1,3},A∩B={3},则r=9.

查看答案和解析>>

同步练习册答案