相关习题
 0  231391  231399  231405  231409  231415  231417  231421  231427  231429  231435  231441  231445  231447  231451  231457  231459  231465  231469  231471  231475  231477  231481  231483  231485  231486  231487  231489  231490  231491  231493  231495  231499  231501  231505  231507  231511  231517  231519  231525  231529  231531  231535  231541  231547  231549  231555  231559  231561  231567  231571  231577  231585  266669 

科目: 来源: 题型:解答题

13.已知函数f(x)=x-$\frac{1}{x}$+alnx(a∈R).
(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(2)已知g(x)=$\frac{1}{2}$x2+(m-1)x+$\frac{1}{x}$,m≤-$\frac{3\sqrt{2}}{2}$,h(x)=f(x)+g(x),当时a=1,h(x)有两个极值点x1,x2,且x1<x2,求h(x1)-h(x2)的最小值.

查看答案和解析>>

科目: 来源: 题型:解答题

12.已知函数f(x)=x3+ax2-a2x-1,a>0.
(1)当a=2时,求函数f(x)的单调区间;
(2)若关于x的不等式f(x)≤0在[1,+∞)上有解,求a的取值范围;
(3)若存在x0,使得x0既是函数f(x)的零点,又是函数f(x)的极值点,请写出此时a的值.(只需写出结论)

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知a,b∈R,a2+b2=$\frac{1}{2}$.
(1)求证:|a|+|b|≤1;
(Ⅱ)证明:方程:x2+ax+b=0,两根的绝对值均小于或等于1.

查看答案和解析>>

科目: 来源: 题型:解答题

10.变换T1是逆时针旋转$\frac{π}{2}$角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=$[\begin{array}{l}{1}&{1}\\{0}&{1}\end{array}]$.
(1)点P(2,1)经过变换T1得到点P′,求P′的坐标;
(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

9.已知函数f(x)=|x+a|+|x-4|.
(Ⅰ)若a=1,解不等式:f(x)≤2|x-4|;
(Ⅱ)若f(x)≥3恒成立,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

8.已知定义在[-$\frac{π}{2}$,$\frac{π}{2}$]的函数f(x)=sinx(cosx+1)-ax,若y=f(x)仅有一个零点,则实数a的取值范围是(  )
A.($\frac{2}{π}$,2]B.(-∞,$\frac{2}{π}$)∪[2,+∞)C.[-$\frac{1}{2}$,$\frac{2}{π}$)D.(-∞,-$\frac{1}{2}$]∪($\frac{2}{π}$,+∞)

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知函数f(x)=2mx3-3nx2+10(m,n>0)有两个不同零点,则5lg2m+9lg2n的最小值是(  )
A.6B.$\frac{13}{9}$C.1D.$\frac{5}{9}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知⊙C经过A(2,1),B(3,0),C($\frac{3}{2}$,$\frac{\sqrt{3}}{2}$).
(1)求⊙C的方程;
(2)过原点作直线l交⊙C于M,N两点,若$\overrightarrow{OM}$=2$\overrightarrow{MN}$,求直线l方程.

查看答案和解析>>

科目: 来源: 题型:选择题

5.对于函数f(x),若存在x0∈Z,满足|f(x0)|≤$\frac{1}{4}$,则称x0为函数的一个“近零点”,已知函数f(x)=ax2+bx+c(a>0)有四个不同的“近零点”,则a的取值范围是(  )
A.[$\frac{2}{9}$,$\frac{1}{4}$)B.[$\frac{2}{9}$,$\frac{1}{4}$]C.(0,$\frac{2}{9}$]D.(0,$\frac{1}{4}$]

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦距为$2\sqrt{3}$,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于A(x1,y1)、B(x2,y2),且在椭圆C上存在点M,使得:$\overrightarrow{OM}=\frac{3}{5}\overrightarrow{OA}+\frac{4}{5}\overrightarrow{OB}$(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线PQ、QR、RP都具有性质H.

查看答案和解析>>

同步练习册答案