相关习题
 0  231400  231408  231414  231418  231424  231426  231430  231436  231438  231444  231450  231454  231456  231460  231466  231468  231474  231478  231480  231484  231486  231490  231492  231494  231495  231496  231498  231499  231500  231502  231504  231508  231510  231514  231516  231520  231526  231528  231534  231538  231540  231544  231550  231556  231558  231564  231568  231570  231576  231580  231586  231594  266669 

科目: 来源: 题型:解答题

13.设函数f(x)=-lnx+ax2+(1-2a)x+a-1,(x∈(0,+∞),实数a∈R).
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若f(x)>0在x∈(0,1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:选择题

12.在四面体ABCD中,已知AB=CD=$\sqrt{13}$,BC=DA=$\sqrt{0}$,AC=BD=$\sqrt{5}$,E,F分别是棱AC,BD的中点,则EF的长为(  )
A.3B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目: 来源: 题型:解答题

11.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,过焦点F的直线与椭圆交于A,B两点,线段AB的中点为M(-$\frac{2}{3}$,$\frac{1}{3}$).
(Ⅰ)求椭圆方程;
(Ⅱ)过点A与椭圆只有一个公共点的直线为l1,过点F与AF垂直的直线为l2,求证l1与l2的交点在定直线上.

查看答案和解析>>

科目: 来源: 题型:解答题

10.已知圆E经过点(2,3),(0,1),($\sqrt{3}$,4),圆F的圆心为(0,-3),且圆C截直线m:x+3y+6=0所得弦长为$\frac{3}{5}$$\sqrt{890}$.
(1)求圆E与圆F的标准方程;
(2)已知一动圆C与圆E、圆F都相切,求动圆圆心W的轨迹方程;
(3)已知过点A(-1,0)的动直线l与圆E相交于P、Q两点,M是PQ的中点,l与直线m相交于点N,试探究$\overrightarrow{AM}$•$\overrightarrow{AN}$是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.

查看答案和解析>>

科目: 来源: 题型:填空题

9.过抛物线y2=10x的焦点的一条直线交抛物线于A、B两点,若线段AB的中点的横坐标是3,则|AB|=11.

查看答案和解析>>

科目: 来源: 题型:解答题

8.如图为焦点在x轴上的椭圆,且离心率e=$\frac{\sqrt{2}}{2}$,且过点A(-2,1),有椭圆上异于点A的点P出发的光线射到点A处被直线y=1反射后交椭圆于点Q(点Q与点P不重合).
(1)求椭圆的标准方程;
(2)当反射光线AQ过点(0,-3)时,求△OAP的面积;
(3)求证:直线PQ的斜率为定值.

查看答案和解析>>

科目: 来源: 题型:解答题

7.(1)已知椭圆:$\frac{{x}^{2}}{9}$+y2=1,过左焦点F作倾斜角为$\frac{π}{6}$的直线交椭圆A、B两点,求弦AB的长;
(2)已知椭圆4x2+y2=1及直线y=x+m,若直线被椭圆截得的弦长为$\frac{2\sqrt{10}}{5}$,求直线的方程.

查看答案和解析>>

科目: 来源: 题型:解答题

6.已知点P是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)右支上一点,F1、F2分别为双曲线的左、右焦点.
(1)证明:△PF1F2的内切圆的圆心的横坐标为a;
(2)若点M(a,2),且$\frac{\overrightarrow{P{F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$=$\frac{\overrightarrow{{{F}_{2}F}_{1}}•\overrightarrow{M{F}_{1}}}{|\overrightarrow{{F}_{2}{F}_{1}}|}$,求△PMF1、与△PMF2的面积之差.

查看答案和解析>>

科目: 来源: 题型:解答题

5.从抛物线Γ:x2=4y外一点P引抛物线Γ的两条切线PA和PB(切点为A,B),分别与x轴相交于C,D,若AB与y轴相交于点Q.
(Ⅰ)求证:四边形PCQD是平行四边形;
(Ⅱ)四边形PCQD能否为矩形?若能,求出点Q的坐标;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

4.已知函数f(x)=lnx-mx(m∈R).
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)当m≥$\frac{3\sqrt{2}}{2}$时,设g(x)=2f(x)+x2的两个极值点x1,x2(x1<x2)恰为h(x)=lnx-cx2-bx的零点,求y=(x1-x2)h′($\frac{{x}_{1}+{x}_{2}}{2}$)的最小值.

查看答案和解析>>

同步练习册答案