相关习题
 0  231462  231470  231476  231480  231486  231488  231492  231498  231500  231506  231512  231516  231518  231522  231528  231530  231536  231540  231542  231546  231548  231552  231554  231556  231557  231558  231560  231561  231562  231564  231566  231570  231572  231576  231578  231582  231588  231590  231596  231600  231602  231606  231612  231618  231620  231626  231630  231632  231638  231642  231648  231656  266669 

科目: 来源: 题型:填空题

8.已知M为不等式组$\left\{\begin{array}{l}{y≤{x}^{2}}\\{1≤x≤2}\\{y≥0}\end{array}\right.$表示的平面区域,直线l:y=2x+a,当a从-2连续变化到0时,区域M被直线扫过的面积为$\frac{4}{3}$.

查看答案和解析>>

科目: 来源: 题型:解答题

7.某单位为了了解用电量y度与气温x℃之间的关系,随机统计了某4天的用电量与当天气温.
气温(℃)141286
用电量(度)22263438
(I)求线性回归方程;(参考数据:$\sum_{i=1}^4{x_i}{y_i}=1120,\sum_{i=1}^4{x_i^2=440}$)
(II)根据(1)的回归方程估计当气温为10℃时的用电量.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目: 来源: 题型:选择题

6.函数f(x)=$\frac{1}{2}{x^2}$-2ax+lnx在(0,+∞)上不单调,则a的取值范围是(  )
A.a<-1或a>1B.a≤-1或a≥1C.a≥1D.a>1

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数y=f(x)的导函数为y=f′(x),当x≠0时,f'(x)+$\frac{f(x)}{x}$>0,若a=$\frac{1}{2}$f($\frac{1}{2}$),b=2f(2),c=(ln2)f(ln2),则a,b,c的大小关系正确的是(  )
A.a<c<bB.b<c<aC.a<b<cD.c<a<b

查看答案和解析>>

科目: 来源: 题型:选择题

4.有下列说法:
①线性回归方程一般都有时间性;
②样本的取值范围会影响线性回归方程的适用范围;
③根据线性回归方程得到的预测值是预测变量的精确值
④在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适;
⑤相关指数R2来刻画回归的效果,R2值越小,说明模型的拟合效果越好;
其中正确命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目: 来源: 题型:选择题

3.用数学归纳法证明不等式1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{{{2^n}-1}}$>$\frac{n}{2}$(n∈N*),则n=k+1与n=k相比,不等式左边增加的项数是(  )
A.1B.k-1C.kD.2k

查看答案和解析>>

科目: 来源: 题型:选择题

2.定积分$\int_0^1{(\sqrt{1-{x^2}}}+{x^2})$dx=(  )
A.$\frac{π}{2}+\frac{1}{3}$B.$\frac{π}{2}-\frac{1}{3}$C.$\frac{π}{4}+\frac{1}{3}$D.$\frac{π}{4}-\frac{1}{3}$

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知函数f(x)=Asin(ωx+ϕ)(A>0且??>0,0<ϕ<$\frac{π}{2}$)的部分图象,如图所示.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间;
(3)若方程f(x)=a在(0,$\frac{5π}{3}$)上有两个不同的实根,试求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

20.已知$\overrightarrow a,\overrightarrow b,\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=(1,2)$.
(1)若|$\overrightarrow b$|=3$\sqrt{5}$,且$\overrightarrow a$∥$\overrightarrow b$,求$\overrightarrow b$的坐标.
(2)若|$\overrightarrow c$|=$\sqrt{10}$,且2$\overrightarrow{a}$+$\overrightarrow{c}$与4$\overrightarrow a-3\overrightarrow c$垂直,求$\overrightarrow a$与$\overrightarrow c$的夹角.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知$\overrightarrow a$=(3,2),$\overrightarrow b$=(-1,2),$\overrightarrow c$=(5,6).
(1)求$3\overrightarrow a$+$\overrightarrow b$-2$\overrightarrow c$;
(2)求满足$\overrightarrow c$=m$\overrightarrow a$+n$\overrightarrow b$的实数m,n.

查看答案和解析>>

同步练习册答案