相关习题
 0  231512  231520  231526  231530  231536  231538  231542  231548  231550  231556  231562  231566  231568  231572  231578  231580  231586  231590  231592  231596  231598  231602  231604  231606  231607  231608  231610  231611  231612  231614  231616  231620  231622  231626  231628  231632  231638  231640  231646  231650  231652  231656  231662  231668  231670  231676  231680  231682  231688  231692  231698  231706  266669 

科目: 来源: 题型:解答题

14.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex,(a为实数)
(1)当a=5时,求函数y=g(x)在点(1,g(1))处的切线方程;
(2)若存在不等实根x1,x2∈[$\frac{1}{e}$,e],使方程g(x)=2exf(x)成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

13.研究表明,成年人的身高和体重具有线性相关性.小明随机调查了五名成年人甲乙丙丁戊的身高和体重,得到的结果如下表所示,根据表格中数据回答下列问题.
编号
身高x(cm)166170172174178
体重y(kg)5560656570
(1)从这五名成年人中任选两名做问卷调查,求选出的两名成年人的身高超过了170cm且体重均超过60kg的概率;
(2)求身高x与体重y的回归直线方程y=bx+a,并据此推测身高为180cm的成年人的体重大约是多少?

查看答案和解析>>

科目: 来源: 题型:解答题

12.设数列{an}是首项为1,公差为d的等差数列,且a1,a2-1,a3-1是等比数列{bn}的前三项.
(1)求{an}和{bn}的通项公式
(2)求数列{an-bn}的前n项和Tn

查看答案和解析>>

科目: 来源: 题型:填空题

11.某公共汽车每5分钟发一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率$\frac{3}{5}$.

查看答案和解析>>

科目: 来源: 题型:填空题

10.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则log3a10=log332.

查看答案和解析>>

科目: 来源: 题型:解答题

9.各项均为正数的数列{an},a1=a,a2=b,且对满足m+n=p+q的正整数m,n,p,q都有$\frac{{a}_{m}+{a}_{n}}{(1+{a}_{m})(1+{a}_{n})}$=$\frac{{a}_{p}+{a}_{q}}{(1+{a}_{p})(1+{a}_{q})}$.
(Ⅰ)当a=$\frac{1}{2}$,b=$\frac{4}{5}$时,求证:数列{$\frac{{1-{a_n}}}{{1+{a_n}}}$}是等比数列,并求通项an;  
(Ⅱ)证明:对任意a,存在与a有关的常数λ,使得对于每个正整数n,都有$\frac{1}{λ}$≤an≤λ.

查看答案和解析>>

科目: 来源: 题型:填空题

8.已知cos(θ+$\frac{π}{4}$)=-$\frac{\sqrt{10}}{10}$,θ∈(0,$\frac{π}{2}$),则cosθ=$\frac{\sqrt{5}}{5}$; sin(2θ-$\frac{π}{3}$)=$\frac{4+3\sqrt{3}}{10}$.

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2,则an=2n;记Tn=a1+3a2+…+(2n-1)an,则Tn=6+(2n-3)2n+1

查看答案和解析>>

科目: 来源: 题型:填空题

6.已知动点P在直线x-y+2$\sqrt{2}$=0上移动,由点P向圆x2+y2=1引切线,则切线段长的最小值为$\sqrt{3}$;若P的横坐标为$\sqrt{2}$,则过点P的在两个坐标轴上的截距相等的直线方程是y=3x或y=-x+4$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.已知函数f(x)=|x2-2x-3|,若a<b<1,且f(a)=f(b),则u=2a+b的最小值为(  )
A.-4B.3-2$\sqrt{10}$C.3-4$\sqrt{2}$D.-2

查看答案和解析>>

同步练习册答案