相关习题
 0  231531  231539  231545  231549  231555  231557  231561  231567  231569  231575  231581  231585  231587  231591  231597  231599  231605  231609  231611  231615  231617  231621  231623  231625  231626  231627  231629  231630  231631  231633  231635  231639  231641  231645  231647  231651  231657  231659  231665  231669  231671  231675  231681  231687  231689  231695  231699  231701  231707  231711  231717  231725  266669 

科目: 来源: 题型:解答题

6.已知函数f(x)=$\frac{-{2}^{x}+m}{{2}^{x+1}+n}$,(其中m、n为参数).
(1)当m=n=1时,证明:f(x)不是奇函数;
(2)如果m=1,n=2,判断f(x)的单调性并给予证明.
(3)在(2)的条件下,求不等式f(f(x))+f($\frac{1}{4}$)<0的解集.

查看答案和解析>>

科目: 来源: 题型:填空题

5.设α∈{-1,1,2,$\frac{3}{5}$,$\frac{7}{2}}\right.$},则使函数y=xα的定义域为R且为奇函数的所有α值组成的集合为{1,$\frac{3}{5}$}.

查看答案和解析>>

科目: 来源: 题型:填空题

4.在△ABC中角A,B,C所对的边长分别为a,b,c,且sinAcosC+$\frac{1}{2}$sinC=sinB.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求△ABC周长的最大值及相应的b,c值.

查看答案和解析>>

科目: 来源: 题型:填空题

3.已知函数f(x)是定义在R上不恒为0的函数,且对于任意的实数a,b满足f(2)=2,f(ab)=af(b)+bf(a),an=$\frac{f({2}^{n})}{{2}^{n}}$(n∈N*),bn=$\frac{f({2}^{n})}{n}$(n∈N*),给出下列命题:
①f(0)=f(1);
②f(x)为奇函数;
③数列{an}为等差数列;
④数列{bn}为等比数列.
其中正确的命题是①②③④.(写出所有正确命题的序号)

查看答案和解析>>

科目: 来源: 题型:选择题

2.若0<b<a,下列不等式中不一定成立的是(  )
A.$\frac{1}{a-b}>\frac{1}{b}$B.$\frac{1}{a}<\frac{1}{b}$C.$\sqrt{a}>\sqrt{b}$D.-a<-b<0

查看答案和解析>>

科目: 来源: 题型:选择题

1.2位女生和3位男生共5位同学站成一排,若女生甲不站两端,3位男生中有且只有两位男生相邻,则不同排法的种数是(  )
A.36B.42C.48D.60

查看答案和解析>>

科目: 来源: 题型:选择题

20.设复数x=$\frac{2i}{1-i}$(i是虚数单位),则C${\;}_{2016}^{1}$x+C${\;}_{2016}^{2}$x2+C${\;}_{2016}^{3}$x3+…+C${\;}_{2016}^{2016}$x2016=(  )
A.0B.-2C.-1+iD.-1-i

查看答案和解析>>

科目: 来源: 题型:选择题

19.对于数列{xn},若对任意n∈N*,都有$\frac{{x}_{n}+{x}_{n+2}}{2}$<xn+1成立,则称数列{xn}为“减差数列”.设bn=2t-$\frac{tn-1}{{2}^{n-1}}$,若数列b3,b4,b5,…是“减差数列”,则实数t的取值范围是(  )
A.(-1,+∞)B.(-∞,-1]C.(1,+∞)D.(-∞,1]

查看答案和解析>>

科目: 来源: 题型:填空题

18.若点P(x,y)在不等式组$\left\{\begin{array}{l}x+y-7≤0\\ x-2y+5≤0\\ 2x-y+1≥0\end{array}\right.$所确定的区域内,则z=y-x的最大值为3.

查看答案和解析>>

科目: 来源: 题型:选择题

17.已知集合M={x|y=ln(1-x)},集合N={y|y=3x,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

同步练习册答案