相关习题
 0  231610  231618  231624  231628  231634  231636  231640  231646  231648  231654  231660  231664  231666  231670  231676  231678  231684  231688  231690  231694  231696  231700  231702  231704  231705  231706  231708  231709  231710  231712  231714  231718  231720  231724  231726  231730  231736  231738  231744  231748  231750  231754  231760  231766  231768  231774  231778  231780  231786  231790  231796  231804  266669 

科目: 来源: 题型:填空题

16.函数f(x)=Asinωx(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+…+f(2017)=$\sqrt{2}$.

查看答案和解析>>

科目: 来源: 题型:填空题

15.数列{an}满足a1=1,an-an-1=$\frac{1}{{2}^{n-1}}$(n∈N*),则an=2-$(\frac{1}{2})^{n-1}$.

查看答案和解析>>

科目: 来源: 题型:填空题

14.若x,y满足约束条件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,则z=2x+y的最大值为$\frac{5}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

13.已知函数f(x)=lnx-x.
(1)求函数f(x)在(1,f(1))处的切线方程;
(2)设a>0,若对于任意的x1,x2∈(0,+∞)都有|f(x1)|>$\frac{aln{x}_{2}}{{x}_{2}}$成立,求实数a的取值范围;
(3)设n>m>0,试比较$\frac{f(m)+m-[f(n)+n]}{m-n}$与$\frac{2m}{{m}^{2}+{n}^{2}}$的大小,并说明理由.

查看答案和解析>>

科目: 来源: 题型:解答题

12.某单位有男职工600名,女职工400人,在单位想了解本单位职工的运动状态,根据性别采取分层抽样的方法从全体职工中抽取100人,调查他们平均每天运动的时间(单位:小时),统计表明该单位职工平均每天运动的时间范围是[0,2].若规定平均每天运动的时间不少于1小时的为“运动达人”,低于1小时的为“非运动达人”.根据调查的数据,按性别与是否为运动达人进行统计,得到如下2×2列联表.
运动时间
性别
运动达人非运动达人合计
36
26
合计100
(Ⅰ)请根据题目信息,将2×2列联表中的数据补充完整,并通过计算判断能否在犯错误概率不超过0.025的前提下认为性别与是否为运动达人有关;
(Ⅱ)将此样本的频率估计为总体的概率,随机调查该单位的3名男职工,设调查的3人中运动达人的人数为随机变量X,求X的分布列和数学期望E(X)及方差D(X).
附表及公式:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 
 k0 2.0722.706 3.841  5.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目: 来源: 题型:填空题

11.设a=${∫}_{0}^{\frac{π}{2}}$(sinx+cosx)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6展开式中含x-1项的系数是60.

查看答案和解析>>

科目: 来源: 题型:选择题

10.已知命题p:函数y=ln(x2+3)+$\frac{1}{{ln({x^2}+3)}}$的最小值是2;命题q:x>2是x>l的充分不必要条件.则下列命题为真命题的是(  )
A.p∧qB.?p∧?qC.?p∧qD.p∧?q

查看答案和解析>>

科目: 来源: 题型:选择题

9.若数列{an}满足$\frac{1}{{{a_{n+1}}}}-\frac{p}{a_n}$=0,n∈N*,p为非零常数,则称数列{an}为“梦想数列”.已知正项数列$\left\{{\frac{1}{b_n}}\right\}$为“梦想数列”,且b1b2b3…b99=399,则b8+b92的最小值是(  )
A.3B.6C.9D.12

查看答案和解析>>

科目: 来源: 题型:选择题

8.数列{an}满足:a1=1,且对任意的m,n∈N+都有am+n=am+an+m•n,则$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目: 来源: 题型:填空题

7.已知函数f(x)=$\left\{{\begin{array}{l}{\frac{1}{2}\sqrt{{x^2}+1},x≥0}\\{-ln(1-x),x<0}\end{array}}$,若函数F(x)=f(x)-kx有且只有两个零点,则k的取值范围为($\frac{1}{2}$,1).

查看答案和解析>>

同步练习册答案