相关习题
 0  231636  231644  231650  231654  231660  231662  231666  231672  231674  231680  231686  231690  231692  231696  231702  231704  231710  231714  231716  231720  231722  231726  231728  231730  231731  231732  231734  231735  231736  231738  231740  231744  231746  231750  231752  231756  231762  231764  231770  231774  231776  231780  231786  231792  231794  231800  231804  231806  231812  231816  231822  231830  266669 

科目: 来源: 题型:解答题

11.设二次函数f(x)=ax2+bx.
(1)若1≤f(-1)≤2,2≤f(1)≤4,求f(-2)的取值范围;
(2)当b=1时,若对任意x∈[0,1],-1≤f(x)≤1恒成立,求实数a的取值范围.

查看答案和解析>>

科目: 来源: 题型:解答题

10.设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=10,a7=14.
(1)求数列{an}、{bn}的通项公式;
(2)若cn=$\frac{1}{4}$anbn,Tn为数列{cn}的前n项和.求Tn

查看答案和解析>>

科目: 来源: 题型:解答题

9.如图,角A为钝角,且sinA=$\frac{3}{5}$,点P、Q分别是在角A的两边上不同于点A的动点.
(1)若AP=5,PQ=3$\sqrt{5}$,求AQ的长;
(2)设∠APQ=α,∠AQP=β,且cosα=$\frac{12}{13}$,求cos(α+β)和cos(2α+β)的值.

查看答案和解析>>

科目: 来源: 题型:选择题

8.△ABC中内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,且a2-c2=ac-bc,则角A的大小及$\frac{bsinB}{c}$的值分别为(  )
A.$\frac{π}{6}$,$\frac{1}{2}$B.$\frac{π}{3}$,$\frac{{\sqrt{3}}}{2}$C.$\frac{π}{3}$,$\frac{1}{2}$D.$\frac{π}{6}$,$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目: 来源: 题型:选择题

7.已知{an}为等比数列,若a1+a4=8,a3+a6=2,则公比q的值为(  )
A.±2B.$±\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

科目: 来源: 题型:解答题

6.大学毕业生小张到甲、乙、丙三个单位应聘,各单位是否录用他是相互独立的,其被录用的概率分别为$\frac{4}{5}$,$\frac{2}{3}$,$\frac{3}{4}$(允许小张被多个单位同时录用),
(1)求小张没有被录用的概率;
(2)求小张恰被两个单位录用的概率.

查看答案和解析>>

科目: 来源: 题型:解答题

5.(1+x)4+(1+x)5+…+(1+x)9展开式中,x3项的系数为209.(用数字作答)

查看答案和解析>>

科目: 来源: 题型:选择题

4.在(1+x+$\frac{1}{{x}^{2015}}$)10的展开式中,含x2项的系数为(  )
A.10B.30C.45D.120

查看答案和解析>>

科目: 来源: 题型:解答题

3.(1)用分析法证明不等式:$\sqrt{6}$+$\sqrt{5}$>$\sqrt{7}$+2;
(2)用综合法证明不等式:若a+b+c=1,则ab+bc+ac≤$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

2.已知命题p:“x>1”,命题q:“$\frac{1}{x}$<1”,则p是q的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案