相关习题
 0  231673  231681  231687  231691  231697  231699  231703  231709  231711  231717  231723  231727  231729  231733  231739  231741  231747  231751  231753  231757  231759  231763  231765  231767  231768  231769  231771  231772  231773  231775  231777  231781  231783  231787  231789  231793  231799  231801  231807  231811  231813  231817  231823  231829  231831  231837  231841  231843  231849  231853  231859  231867  266669 

科目: 来源: 题型:解答题

2.如图,边长为2的菱形ABCD中,∠A=60°,E、F分别是BC,DC的中点,G为 BF、DE的交点,若$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}$=$\overrightarrow b$
(1)试用$\overrightarrow a$,$\overrightarrow b$表示$\overrightarrow{AE}$,$\overrightarrow{BF}$,$\overrightarrow{CG}$;
(2)求$\overrightarrow{BF}$•$\overrightarrow{CG}$的值.

查看答案和解析>>

科目: 来源: 题型:解答题

1.已知等差数列{an}的前n项和为Sn,S7=0,a3-2a2=12.
(1)求数列{an}的通项公式;
(2)求Sn-15n+50的最小值.

查看答案和解析>>

科目: 来源: 题型:选择题

20.已知向量|$\overrightarrow a}$|=4,$\overrightarrow e$为单位向量,当他们之间的夹角为$\frac{π}{3}$时,$\overrightarrow{a}$在$\overrightarrow{e}$方向上的投影与$\overrightarrow{e}$在$\overrightarrow{a}$方向上的投影分别为(  )
A.2$\sqrt{3}$,$\frac{\sqrt{3}}{2}$B.2,$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$,2$\sqrt{3}$D.2,2

查看答案和解析>>

科目: 来源: 题型:选择题

19.下列各式中,最小的是(  )
A.2cos240°-1B.2sin6°cos6°
C.sin50°cos37°-sin40°cos53°D.$\frac{\sqrt{3}}{2}$sin41°-$\frac{1}{2}$cos41°

查看答案和解析>>

科目: 来源: 题型:解答题

18.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
场数91011121314
人数10182225205
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
根据已知条件完成下面的2×2列联表,并据此资料判断我们能否有95%的把握认为“歌迷”与性别有关?
非歌迷歌迷合计
合计
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d为样本容量.

查看答案和解析>>

科目: 来源: 题型:填空题

17.设a∈{1,3,5},b∈{2,4,8},则函数y=log${\;}_{\frac{b}{a}}$$\frac{1}{x}$是增函数的概率为$\frac{1}{3}$.

查看答案和解析>>

科目: 来源: 题型:选择题

16.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是(  )
A.45和47B.45 和44C.45和42D.45和45

查看答案和解析>>

科目: 来源: 题型:选择题

15.某单位有员工90人,其中女员工有36人.为做某项调查,拟采用分层抽样抽取容量为15的样本,则男员工应选取的人数是(  )
A.6人B.9人C.10人D.7人

查看答案和解析>>

科目: 来源: 题型:解答题

14.已知某校5个学生的数学和物理成绩如表
学生的编号i12345
数学xi8075706560
物理yi7066686462
(Ⅰ)假设在对这5名学生成绩进行统计时,把这5名学生的物理成绩搞乱了,数学成绩没出现问题,问:恰有2名学生的物理成绩是自己的实际分数的概率是多少?
(Ⅱ)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系的,在上述表格是正确的前提下,用x表示数学成绩,用y表示物理成绩,求y与x的回归方程;
参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\widehat{y}$-$\widehat{b}$x.

查看答案和解析>>

科目: 来源: 题型:填空题

13.给出下列5种说法:
①标准差越小,样本数据的波动也越小;
②回归分析研究的是两个相关事件的独立性;
③在回归分析中,预报变量是由解释变量和随机误差共同确定的;
④相关指数R2是用来刻画回归效果的,R2的值越大,说明回归模型的拟合效果越好.
⑤对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握越小.
其中说法正确的是①③④⑤(请将正确说法的序号写在横线上).

查看答案和解析>>

同步练习册答案