相关习题
 0  231836  231844  231850  231854  231860  231862  231866  231872  231874  231880  231886  231890  231892  231896  231902  231904  231910  231914  231916  231920  231922  231926  231928  231930  231931  231932  231934  231935  231936  231938  231940  231944  231946  231950  231952  231956  231962  231964  231970  231974  231976  231980  231986  231992  231994  232000  232004  232006  232012  232016  232022  232030  266669 

科目: 来源: 题型:填空题

8.经过两条直线2x-y-3=0和4x-3y-5=0的交点,并且与直线2x+3y+5=0垂直的直线方程为3x-2y-4=0.

查看答案和解析>>

科目: 来源: 题型:选择题

7.圆x2+y2=4与圆x2+y2-4x+4y-12=0的公共弦所在直线和两坐标轴所围成的面积为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目: 来源: 题型:填空题

6.若关于x的不等式acos2x+cosx≥-1恒成立,则实数a的取值范围是[$\frac{2-\sqrt{2}}{4}$,$\frac{2+\sqrt{2}}{4}$].

查看答案和解析>>

科目: 来源: 题型:填空题

5.三棱锥P-ABC是半径为3的球内接正三棱锥,则P-ABC体积的最大值为8$\sqrt{3}$.

查看答案和解析>>

科目: 来源: 题型:填空题

4.若定义在区间D上的函数y=f(x)满足:对?x∈D,?M∈R,使得|f(x)|≤M恒成立,则称函数y=f(x)在区间D上有界.则下列函数中有界的是:①④⑤.
①y=sinx;②$y=x+\frac{1}{x}$;③y=tanx;④$y=\frac{{{e^x}-{e^{-x}}}}{{{e^x}+{e^{-x}}}}$;
⑤y=x3+ax2+bx+1(-4≤x≤4),其中a,b∈R.

查看答案和解析>>

科目: 来源: 题型:解答题

3.已知命题p:“函数f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2在(-∞,+∞)上是增函数”,命题q:“曲线$\frac{x^2}{5-m}+\frac{y^2}{1+m}=1$表示椭圆”,若“¬p∨¬q”是假命题,求m的取值范围.

查看答案和解析>>

科目: 来源: 题型:填空题

2.(1)设x>0,y>0,若$\sqrt{2}$是2x与4y的等比中项,则①x2+2y2的最小值为$\frac{1}{3}$.②$\frac{1}{x}+\frac{1}{y}$的最小值为3+2$\sqrt{2}$.
(2)根据以上两个小题的解答,总结说明含条件等式的求最值问题的解决方法(写出两个)
①二次函数的性质②均值不等式.

查看答案和解析>>

科目: 来源: 题型:解答题

1.在平面直角坐标系中,定点F1(1,0),F2(-1,0),动点P与两定点F1,F2距离的比为一个正数m.
(1)求点P的轨迹方程C,并说明轨迹是什么图形;
(2)若m=$\frac{\sqrt{2}}{2}$,过点A(1,2)作倾斜角互补的两条直线,分别交曲线C于P,Q两点,求直线PQ的斜率.

查看答案和解析>>

科目: 来源: 题型:填空题

20.设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M(M⊆D),有(x-m)∈D且f(x-m)≤f(x),则称f(x)为M上的m度低调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x-a2|-a2,且f(x)为R上的5度低调函数,那么实数a的取值范围为-$\frac{\sqrt{5}}{2}$≤a≤$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目: 来源: 题型:解答题

19.已知f(x)=x|x-a|+b,x∈R.
(1)当a=1,b=1时,若$f(x)=\frac{5}{4}$,求x的值;
(2)若b<0,且对任何x∈(0,1]不等式f(x)<0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案