相关习题
 0  231840  231848  231854  231858  231864  231866  231870  231876  231878  231884  231890  231894  231896  231900  231906  231908  231914  231918  231920  231924  231926  231930  231932  231934  231935  231936  231938  231939  231940  231942  231944  231948  231950  231954  231956  231960  231966  231968  231974  231978  231980  231984  231990  231996  231998  232004  232008  232010  232016  232020  232026  232034  266669 

科目: 来源: 题型:选择题

8.已知实数4、m、16构成一个等比数列,则圆锥曲线$\frac{x^2}{m}+{y^2}=1$的离心率为(  )
A.3B.$\frac{{\sqrt{14}}}{4}$C.$\sqrt{3}$或 $\frac{{\sqrt{14}}}{4}$D.$\frac{{\sqrt{14}}}{4}$或3

查看答案和解析>>

科目: 来源: 题型:选择题

7.若实数x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x+y≥0\\ x≤0\end{array}\right.$则z=3x+3y的最小值是(  )
A.0B.9C.$\sqrt{3}$D.1

查看答案和解析>>

科目: 来源: 题型:填空题

6.由y=x2和y=2x围成的平面图形绕x轴旋转一周所形成的旋转体的体积为$\frac{64}{15}π$.

查看答案和解析>>

科目: 来源: 题型:选择题

5.函数f(x)=ax2+2ax+1在[-3,2]上有最大值4.那么实数a等于(  )
A.-3B.$\frac{3}{8}$C.$-3或\frac{3}{8}$D.$3或-\frac{3}{8}$

查看答案和解析>>

科目: 来源: 题型:解答题

4.点P为△ABC平面上一点,有如下三个结论:
②若$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的重心;
②若sinA•$\overrightarrow{PA}$+sinB$\overrightarrow{PB}$+sinC•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的内心;
③若sin2A•$\overrightarrow{PA}$+sin2B•$\overrightarrow{PB}$+sin2C•$\overrightarrow{PC}$=$\overrightarrow{0}$,则点P为△ABC的外心.
回答以下两个小问:
(1)请你从以下四个选项中分别选出一项,填在相应的横线上.
A.重心  B.外心  C.内心  D.重心
(2)请你证明结论②

查看答案和解析>>

科目: 来源: 题型:填空题

3.某程序流程图如图所示,依次输入函数$f(x)=sin(x-\frac{π}{6})$,$f(x)=\frac{1}{2}sin(2x+\frac{π}{6})$,f(x)=tanx,$f(x)=cos(2x-\frac{π}{6})$,执行该程序,输出的数值p=$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目: 来源: 题型:填空题

2.设等差数列{an}的前n项和为Sn,若S3=9,S5=30,则a7+a8+a9=63.

查看答案和解析>>

科目: 来源: 题型:解答题

1.设椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{1}{2}$,右焦点到直线$\frac{x}{a}+\frac{y}{b}$=1的距离$d=\frac{{\sqrt{21}}}{7}$,O为坐标原点
(1)求椭圆E的方程
(2)过点O作两条互相垂直的射线,与椭圆E分别交于A、B两点,求点O到直线AB的距离.

查看答案和解析>>

科目: 来源: 题型:解答题

20.如图,已知四棱锥S-ABCD是底面边长为$2\sqrt{3}$的菱形,且$∠BAD=\frac{π}{3}$,若$∠ASC=\frac{π}{2}$,SB=SD
(1)求该四棱锥体积的取值范围; 
(2)当点S在底面ABCD上的射影为三角形ABD的重心G时,求直线SA与平面SCD夹角的余弦值.

查看答案和解析>>

科目: 来源: 题型:填空题

19.设n=$\int_0^{\frac{π}{2}}{\;}$6sinxdx,则二项式${(x-\frac{2}{x^2})^n}$展开式中,x-3项的系数为-160.

查看答案和解析>>

同步练习册答案